Experimentul KM3NeT detecteaza un neutrino cosmic cu cea mai mare energie observata vreodata

12 Februarie 2025

Experimentul KM3NeT detecteaza un neutrino cosmic cu cea mai mare energie observata vreodata

Colaborarea KM3NeT anunta detectia unui neutrino cosmic cu o energie record de aproximativ 220 PeV

 

In 13 februarie 2023, un eveniment extraordinar, consistent cu un neutrino cu o energie estimata de aproximativ 220 PeV (220×1015 electron volti sau 220 milioane de miliarde de electron volti), a fost detectat de catre detectorul ARCA al telescopului de neutrini KM3NeT, amplasat la mare adancime in Marea Mediterana.  Acest eveniment, numit KM3-230213A, este cel mai energetic neutrino observat vreodata si furnizeaza prima dovada experimentala ca neutrinii de foarte mare energie sunt produsi in Univers. Dupa o munca meticuloasa si de durata pentru analiza si interpretarea datelor experimentale, azi, 12 februarie 2025, Colaborarea stiintifica internationala KM3NeT prezinta detaliile acestei uimitoare descoperiri intr-un articol publicat in Nature.

Particula detectata a fost identificata drept un miuon care a traversat tot detectorul, inducand semnale in mai mult de o treime dintre senzorii activi. Inclinatia traiectoriei sale, combinata cu energia sa enorma, prezinta dovezi incontestabile ca acest miuon provine din interactia unui neutrino cosmic in vecinatatea detectorului.

“KM3NeT a inceput sa testeze un domeniu de energie si sensibilitate in care neutrinii detectati pot proveni din fenomene astrofizice extreme. Prima astfel de detectie a unui neutrino de sute de PeV deschide un nou capitol in astronomia cu neutrini si o noua fereastra observationala catre Univers”, afirma Paschal Coyle, KM3NeT Spokesperson la momentul detectiei si cercetator la CNRS Centre National de la Recherche Scientifique – Centre de Physique de Particules de Marseille, Franta.

Universul energiilor foarte inalte este taramul evenimentelor cataclismice, precum gauri negre supermasive aflate in proces de acretie in centrul galaxiilor, explozii de supernove, explozii de raze gamma, evenimente care inca nu sunt intelese complet. Acesti puternici acceleratori cosmici genereaza fluxuri de particule numite raze cosmice. Razele cosmice pot interactiona cu materia sau fotonii din jurul sursei, pentru a produce neutrini si fotoni. In timpul calatoriei celor mai energetice raze cosmice de-a lungul Universului, unele pot interactiona cu fotoni din radiatia cosmica de fond pentru a produce neutrini “cosmogenici” de energii extreme.

“Neutrinii sunt una dintre cele mai misterioase particule elementare. Ei nu au sarcina electrica, sunt aproape lipsiti de masa si interactioneaza cu materia doar prin intermediul fortei nucleare slabe. Ei sunt mesageri cosmici speciali, care ne aduc informatii unice despre mecanismele implicate in cele mai energetice fenomene si ne permit sa exploram cele mai indepartate colturi din Univers”, explica Rosa Coniglione, KM3NeT Deputy-Spokesperson la momentul detectiei, cercetatoare la INFN National Institute for Nuclear Physics, Italia.

Cu toate ca neutrinii sunt a doua cea mai abundenta particula din Univers dupa fotoni, interactia lor slaba cu materia ii face foarte greu de detectat si aceasta necesita detectori de dimensiuni uriase. Telescopul KM3NeT, actualmente in constructie, este o structura submarina de mare adancime, distribuita in doi detectori, ARCA si ORCA. In configuratia sa finala, KM3NeT va ocupa un volum mai mare de un kilometru cub. Experimentul KM3NeT foloseste apa marii ca mediu de interactie pentru neutrini. Modulele sale optice high-tech detecteaza lumina Cherenkov, o stralucire albastruie produsa in timpul propagarii in apa a particulelor ultra-relativiste rezultate din interactiile neutrinilor.

“Pentru a determina directia si energia acestui neutrino, a fost nevoie de o calibrare precisa a telescopului si de algoritmi de reconstructie sofisticati pentru traiectorii. In plus, aceasta detectie remarcabila a fost realizata cu doar o zecime din configuratia finala a detectorului, demonstrand marele potential al experimentului nostru pentru studiul neutrinilor si pentru astronomia cu neutrini”, declara Aart Heijboer, KM3NeT Physics and Software Manager la momentul detectiei si cercetator la Nikhef National Institute for Subatomic Physics, Olanda.

Detectorul KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss) este dedicat, in principal, studiului neutrinilor de foarte mare energie si a surselor acestora din Univers. Este amplasat la 3450 m adancime, la aproximativ 80 km de coasta Portopalo di Capo Passero, Sicilia. Este alcatuit din unitati de detectie (DU) de 700 m inaltime, ancorate la baza marii si pozitionate la aproximativ 100 m una de cealalta. Fiecare unitate de detectie este echipata cu 18 Module Optice Digitale (DOM), care contin la randul lor cate 31 de fotomultiplicatori. In configuratia sa finala, ARCA va fi alcatuita din 230 de unitati de detectie. Datele experimentale colectate sunt transmise prin intermediul unui cablu submarin la statia de la tarm a institutului INFN Laboratori Nazionali del Sud.

Detectorul KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) este optimizat pentru studiul proprietatilor fundamentale ale neutrinilor. Este amplasat la o adancime de 2450 m, la o distanta de aproximativ 40 km de coasta orasului Toulon, Franta. La finalizarea constructiei, va fi alcatuit din 115 unitati de detectie, de 200 m inaltime si pozitionate la 20 m una fata de cealalta. Datele experimentale colectate de ORCA sunt trimise la statia de la tarm din La Seyne Sur Mer.

“Magnitudinea KM3NeT, care va cuprinde un volum de aproximativ un kilometru cub cu un total de circa 200000 de fotomultiplicatori, impreuna cu amplasarea sa in abisul Marii Mediterane, demonstreaza eforturile extraordinare necesare pentru progresul astronomiei cu neutrini si al fizicii particulelor. Detectia acestui eveniment este rezultatul unui imens efort de colaborare intre multe echipe internationale de ingineri, tehnicieni si oameni de stiinta”, declara Miles Lindsey Clark, KM3NeT Tehnical Project Manager la momentul detectiei si inginer cercetator la CNRS – Astroparticle and Cosmology Laboratory, Franta.

Acest neutrino de energie foarte mare poate proveni dintr-un accelerator cosmic puternic. Alternativ, poate fi prima detectie a unui neutrino cosmogenic. Cu toate acestea, cu un singur neutrino, este dificil sa formulam concluzii despre originea sa. Observatii viitoare se vor concentra pe detectia mai multor astfel de evenimente pentru a construi o imagine mai clara. Expansiunea continua a experimentului KM3NeT cu unitati de detectie aditionale si achizitia de date suplimentare va imbunatati sensibilitatea sa si va amplifica abilitatea sa de a identifica sursele de neutrini cosmici, facandu-l un contributor principal la astronomia multi-mesager.

Colaborarea KM3NeT aduce impreuna mai mult de 360 de cercetatori, ingineri, tehnicieni si studenti din 68 de institutii din 21 de tari din toata lumea.

Experimentul KM3NeT este inclus in harta European Strategy Forum on Research Infrastructures, care recunoaste KM3NeT ca o infrastructura de cercetare prioritara  din Europa. KM3NeT primeste atat fonduri de la Uniunea Europeana, cat si de la agentiile nationale de cercetare din mai multe tari. Experimentul KM3NeT a beneficiat de diverse fonduri din programele de cercetare si inovare europene, cat si din Fondul European de Dezvoltare Regionala.

Institutul de Stiinte Spatiale – Filiala INFLPR este membru al Colaborarii KM3NeT ca urmare a initiativei regretatului nostru coleg, Dr. Vlad Popa. El a propus si a contribuit la dezvoltarea directiei de cercetare in domeniul particulelor exotice, precum nucleariti (particule ipotetice masive de materie stranie) si monopoli magnetici, in cadrul experimentelor de neutrini ANTARES si KM3NeT. Grupul nostru continua acesta directie de cercetare si participa la activitatea stiintifica a experimentului (prin simulari, analize de date, testari de programe, ture de achizitie de date) si la diseminarea rezultatelor obtinute prin publicatii si participari la conferinte internationale si la evenimente de popularizare.

Articolul a fost preluat si adaptat din comunicatul de presa oficial al colaborarii KM3NeT.

Persoana de contact

Alice Paun | alice.paun[at]spacescience.ro

Observatorul Pierre Auger continuă activitatea pâna în 2035

Observatorul Pierre Auger, un exemplu  de cooperare în ştiinţă şi tehnologie, la care participă peste 400 oameni de ştiinţă din 17 ţări, printre care şi România, confirmă extinderea activităţii până în 2035.

Experimentul Pierre Auger se afla în a doua fază de activitate cu detectori îmbunătăţiţi, pentru a mări statistica evenimentelor măsurate de radiaţie cosmică cu energie ultra-înaltă, şi a răspunde la întrebări fundamentale precum: care sunt sursele acestor particule energetice, şi care este compoziţia lor chimică.

România este ţară membră Auger cu drepturi depline din 2014, iar în momentul de faţă este reprezentată de Institutul de Ştiinţe Spaţiale – Filială INFLPR (ISS) si de Institutul Naţional de Fizică şi Inginerie Nucleară “Horia Hulubei”.

Contribuţia ISS în cadrul Colaborării Pierre Auger este reprezentată de activităţi precum: analiza de radio emisie de la jerbele de raze cosmice dezvoltate în atmosfera Pamântului, utilizând metode moderne de calcul performant şi de învăţare automată, pentru a deduce natura particulelor de radiaţie cosmică; activităţi suport la servicul Monte Carlo al Colaborării, pentru producţia de librării de evenimente simulate, care servesc la analiza de date; participare la ture operaţionale şi de monitorizare a detectorilor Auger de la distanţă din ISS-România, şi nu în cele din urma, participare la efortul comun de educaţie şi de conştientizare a ştiinţei în societate, prin implicarea elevilor şi studenţilor în practici de cercetare.

Comunicatul de presă al Collaborării Pierre Auger este disponibil aici:

https://www.auger.org/news/news/335-extension-of-the-international-agreement-for-the-pierre-auger-observatory

Seminar ISS about: Open Questions on the Origin of Ultra-High Energy Cosmic Rays

Prof. Dr. Günter Sigl, Universität Hamburg
Prof. Dr. Günter Sigl, Universität Hamburg

Guest: Prof. Dr. Günter Sigl, Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany

When: 1 August 2024, 11:00

Where: ISS, Auditorium

Abstract:

Origin and nature of ultra-high energy cosmic rays above ~ 1018 eV are still not very well understood. Progress on these questions requires on the one hand enhanced experiments providing multiple complementary observables, such as the Pierre Auger Observatory. On the other hand, there is a need for a better theoretical understanding of the relevant physics, in particular the nature of hadronic interactions that give rise to the detected giant air showers and the propagation of charged particles in a structured Universe. In addition, secondary gamma-rays and neutrinos can provide complementary multimessenger signatures. In this talk we will focus on a few key points on these topics.

Contact: Dr. Gina Isar <gina.isar[at]spacescience[dot]ro>

Gallery:

ESA’s Euclid celebrates first science with sparkling cosmic views

ESA’s Euclid celebrates first science with sparkling cosmic views

ESA’s Euclid space mission released five unprecedented new views of the Universe. The never-before-seen images demonstrate Euclid’s ability to unravel the secrets of the cosmos and enable scientists to hunt for rogue planets, use lensed galaxies to study mysterious matter, and explore the evolution of the Universe.

The new images are part of Euclid’s Early Release Observations. They accompany the mission’s first scientific data, also made public today, and 10 forthcoming science papers. The treasure trove comes less than a year after the space telescope’s launch, and roughly six months after it returned its first full-colour images of the cosmos.

The full set of early observations targeted 17 astronomical objects, from nearby clouds of gas and dust to distant clusters of galaxies, ahead of Euclid’s main survey. This survey aims to uncover the secrets of the dark cosmos and reveal how and why the Universe looks as it does today.

The Institute of Space Science – A Subsidiary of INFLPR is an active member of the Euclid Consortium.

Euclid’s new image of the Dorado group of galaxies

The Dorado Group of galaxies is one of the richest galaxy groups in the southern hemisphere. Here, Euclid captures signs of galaxies evolving and merging ‘in action’, with beautiful tidal tails and shells visible as a result of ongoing interactions. As Dorado is a lot younger than other clusters (like Fornax), several of its constituent galaxies are still forming stars and remain in the stage of interacting with one another, while others show signs of having merged relatively recently. In size, it sits between larger galaxy clusters and smaller galaxy groups, making it a useful and fascinating object to study with Euclid.

This dataset is enabling scientists to study how galaxies evolve and collide over time in order to improve our models of cosmic history and understand how galaxies form within halos of dark matter, with this new image being a true testament to Euclid’s immense versatility. A wide array of galaxies is visible here, from very bright to very faint. Thanks to Euclid’s unique combination of large field-of-view and high spatial resolution, for the first time we can use the same instrument and observations to deeply study tiny (small objects the size of star clusters), wider (the central parts of a galaxy) and extended (tidal merger tails) features over a large part of the sky.

Scientists are also using Euclid observations of the Dorado Group to answer questions that previously could only be explored using painstakingly small snippets of data. This includes compiling a full list of the individual clusters of stars (globular clusters) around the galaxies seen here. Once we know where these clusters are, we can use them to trace how the galaxies formed and study their history and contents. Scientists will also use these data to hunt for new dwarf galaxies around the Group, as it did previously with the Perseus cluster.

The Dorado Group lies 62 million light-years away in the constellation of Dorado.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

Euclid’s new image of star-forming region Messier 78

This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

Euclid peered deep into this enshrouded nursery using its infrared camera, exposing hidden regions of star formation for the first time, mapping its complex filaments of gas and dust in unprecedented detail, and uncovering newly formed stars and planets. This is the first time we’ve been able to see these smaller, sub-stellar sized objects in Messier 78; the dark clouds of gas and dust usually hide them from view, but Euclid’s infrared ‘eyes’ can see through these obscuring clouds to explore within.

Euclid’s sensitive instruments can detect objects just a few times the mass of Jupiter, and its visible and infrared instruments – the VIS and NISP cameras – reveal over 300 000 new objects in this field of view alone. Scientists are using this data to study the amount and ratio of stars and sub-stellar objects here, which is key to understanding the dynamics of how star populations form and change over time. Sub-stellar objects like brown dwarfs and free-floating or ‘rogue’ planets are also one possible candidate for dark matter. While our current knowledge suggests that there aren’t enough of these objects to solve the mystery of dark matter in the Milky Way, it remains an open question, and one that Euclid will definitively answer by probing a significant fraction of our galaxy.

Also visible to the top of the frame is the bright nebula NGC 2071, and a third filament of star formation towards the bottom of the image (with a ‘traffic light’-like appearance). This lower region is a dark nebula producing lower-mass stars, all arranged along elongated filaments in space.

Messier 78 lies 1300 light-years away in the constellation of Orion.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

 

Euclid’s new image of spiral galaxy NGC 6744

Here, Euclid captures NGC 6744, one of the largest spiral galaxies beyond our local patch of space. It’s a typical example of the type of galaxy currently forming most of the stars in the nearby Universe, making it a wonderful archetype to study with Euclid.

Euclid’s large field-of-view covers the entire galaxy, revealing not only spiral structure on larger scales but also capturing exquisite detail on small spatial scales, and at a combination of wavelengths. This detail includes feather-like lanes of dust emerging as ‘spurs’ from the spiral arms, which Euclid is able to image with incredible clarity. Euclid’s observations will allow scientists to not only count individual stars within NGC 6744 but also trace the wider distribution of stars and dust in the galaxy, as well as mapping the dust associated with the gas that fuels new star formation. Forming stars is the main way by which galaxies grow and evolve, so these investigations are central to understanding galaxy evolution – and why our Universe looks the way it does today.

Euclid scientists are using this dataset to understand how dust and gas are linked to star formation; map how different stellar populations are distributed throughout galaxies and where stars are currently forming; and unravel the physics behind the structure of spiral galaxies, something that’s still not fully understood after decades of study. Spiral structure is important in galaxies, as spiral arms move and compress gas to foster star formation (most of which occurs along these arms). However, the exact role of spirals in coordinating ongoing star formation remains unclear. As the aforementioned ‘spurs’ along NGC 6744’s arms are only able to form in a strong enough spiral, these features therefore provide important clues as to why galaxies look and behave as they do.

The dataset will also allow scientists to identify clusters of old stars (globular clusters) and hunt for new dwarf galaxies around NGC 6744. In fact, Euclid has already found a new dwarf ‘satellite galaxy’ of NGC 6744 – a surprise given that this galaxy has been intensively studied in the past.

NGC 6744 lies 30 million light-years away within the Local Group.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

 

Euclid’s new view of galaxy cluster Abell 2764

This new view shows the galaxy cluster Abell 2764 (top right), a very dense region of space containing hundreds of galaxies orbiting within a halo of dark matter.

Euclid captures a range of objects in this patch of sky, including many background galaxies, more distant galaxy clusters, interacting galaxies that have thrown off streams and shells of stars, and a pretty edge-on spiral that allows us to see the ‘thinness’ of its disk.

This complete view of Abell 2764 and surroundings – obtained thanks to Euclid’s impressively wide field-of-view – allows scientists to ascertain the radius of the cluster and study its outskirts with faraway galaxies still in frame. Euclid’s observations of Abell 2764, as with Abell 2390 (another target depicted in the images released today from the space telescope), are also allowing scientists to witness some of the most distant galaxies that lived in a mysterious period known as the cosmic dark ages. Euclid enables us to see these galaxies back when the Universe was only 700 million years old, just 5% of its current age. Viewing their light is a specialty of Euclid, and allows us to witness how the first galaxies formed.

Also seen here is a bright foreground star that lies within our own galaxy (lower left: this is Beta Phoenicis, a star within our galaxy and in the southern hemisphere that’s bright enough to be seen by the human eye). When we look at a star through a telescope, its light is scattered outwards into the typical spiked shape due to the telescope’s optics. Euclid was designed to make this scatter as small as possible. As a result, we can measure the star very accurately, and capture galaxies that lie nearby without being blinded by the star’s brightness.

Abell 2764 lies 3.5 billion light-years away in the direction of the Phoenix constellation.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

Full resolution pictures as well as various zoomed images and further information may be found at https://www.esa.int/Science_Exploration/Space_Science/Euclid.

Contact: vpopa@spacescience.ro

 

 

 

 

 

 

 

 

 

 

 

Seminar ISS about: Remnants from the past, building blocks for the future: the near-Earth asteroids

Dr. Marcel Popescu, IAAR-Bucharest
Dr. Marcel Popescu, IAAR-Bucharest

Guest: Dr. Marcel Popescu, Astronomical Institute of the Romanian Academy, Bucharest, Romania

When: 11 April 2024, 11:00

Where: ISS, Auditorium

Abstract: Asteroids are the remnants of the planetesimal population that once formed the planets. Consequently, they offer significant opportunities for studying the origins of our Solar System, allowing us to trace the pristine conditions of planetary formation untamed by the influence of major planets and their atmospheres.

The near-Earth asteroids (NEAs) represent a class of asteroids with orbits close to our planet. These small bodies of the Solar System are defined as having perihelion distances q < 1.3 astronomical units (au). Because of their proximity to the Earth, they provide valuable information on the delivery of water and organic-rich material to the early Earth, and the subsequent emergence of life (Marty et al. 2016). From a practical point of view, the study of NEAs is a key point for space exploration. For instance, recent missions such as NASA’s OSIRIS-REx and JAXA’s Hayabusa2 have successfully returned samples collected from two primitive asteroids (Bennu and Ryugu). The ESA’s Hera mission, scheduled for launch in October of this year, will investigate the binary asteroid (65803) Didymos, which was the target of the first large-scale collision experiment involving the controlled impact with NASA’s DART spacecraft. Furthermore, the NEAs are regarded as ideal targets for In-Situ Resource Utilization (ISRU) and are anticipated to become a significant source of materials for space activities in the near future (Sanchez & McInnes 2013).

In this talk I will provide an overview of studies concerning the near-Earth objects. I will outline various approaches for discovering asteroids, as well as methods for characterizing them using ground-based telescopes. Finally, I will discuss the exploration of NEAs through space missions.

Contact person: Dr. Gina Isar <gina.isar[at]spacescience[dot]ro

Photo Galery:

Seminar ISS about: Ultra-High Energy Cosmic Rays: Some phenomenological and theoretical perspectives

Prof. Dr. Günter Sigl, Universität Hamburg
Prof. Dr. Günter Sigl, Universität Hamburg

Guest: Prof. Dr. Günter Sigl, Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany

When: 27 March 2024, 11:00

Where: ISS, Auditorium

Abstract:
In this talk we will give an overview over the enigma of Ultra-High Energy Cosmic Rays (UHECRs) above ~ 10^18 eV. After briefly summarizing recent results from the Pierre Auger Observatory, we focus on a few specific aspects from the phenomenological and theoretical point of view: the influence of source distributions and propagation on arrival direction anisotropies, the use of the highest energy particles in Nature for constraining Lorentz symmetry violations, and the interpretation of air shower properties, in particular their muon content, in terms of hadronic interaction models.

Contact person: Dr. Gina Isar <gina.isar[at]spacescience[dot]ro>

Photo gallery:

Full-sky maps: (left) of magnetic field strengths within 50 Mpc distance to the observer, (right) of arrival direction of observed UHECR events with minimum energy E > 58 EeV [S. Hackstein et al., MNRAS 462, 3660 (2016), arXiv:1607.08872].

Publication of the first scientific images obtained by The EUCLID Space Telescope

Nearing the end of the Performance Verification Phase, the Euclid mission performed for 24 hours the program called ERO(Early Release Observations). The telescope was aimed at 6 specially targets, taking into account both the diversity of their nature and their particular impact on the public. Image acquisition was done following the standard observation procedure.

On Tuesday, November 7, at 15:15 Romanian time, the public presentation of these images will begin on the ESA-TV channel, followed by a press conference. Indications on how to access and the action schedule can be found here.

A brief overview of the mission can be found here

Romania participates in the Euclid Consortium through the Institute of Space Sciences, supported by the Romanian Space Agency and the European Space Agency.

Euclid ready for trip to Cape Canaveral

On February 22, Thales Alenia Space, joint venture between Thales (67%) and Leonardo (33 %) and industrial prime contractor for Euclid, together with European Space Agency (ESA) welcomed for the first time eminent scientists from the Euclid Consortium with the satellite in its final integration phase. The iconic Euclid satellite will study one of the Universe’s best kept secrets, namely dark matter and dark energy.
Back in June 2012, ESA selected the Euclid Consortium to take charge of the scientific instruments, data production and operation of the scientific aspects of the mission. It is funded by national space agencies and research organizations and coordinated by the Euclid Consortium Lead (ECL) and a Euclid Consortium Board (ECB)
The Euclid Consortium comprises the teams that first designed and proposed the Euclid mission as a candidate for the ESA Cosmic Vision program, as well as new organizations that are now contributing to implementation. Fourteen European countries are currently involved in the consortium’s activities (Austria, Belgium, Denmark, Finland, France, Germany, Italy, the Netherlands, Norway, Portugal, Romania, Spain, Switzerland and United Kingdom). Other members include Canada and the United States (through NASA and several American laboratories), as well as several Japanese laboratories.
During its six-year mission, Euclid will map the large-scale structure of the Universe out to a distance of more than 10 billion light-years to show how it has expanded and how its structure has evolved over the last three-quarters of its history. The mission is designed to answer some of the most fundamental questions in modern cosmology, such as how the Universe formed and why it is expanding at an accelerating rate instead of being slowed by gravitational attraction.
Standing 4.7 meters tall and weighing about 2 metric tons at launch, Euclid will orbit the L2 Lagrange point in the Sun-Earth system, 1.5 million kilometers from Earth opposite to the Sun. It will deliver 150,000 high-definition images and associated chromatic and spectral information, amounting to nearly one petabyte of data per year. Euclid is scheduled to be launched in July 2023 on a SpaceX Falcon 9 rocket from Cape Canaveral, Florida.
The Romanian contribution to the Euclid mission is supported by the Institute of Space Science, in the frame of the Multi-Lateral Agreement (MLA) between ESA and the Euclid Consortium.
More information and some beautiful photos might be found at:

Euclid gata de calatorie la Cape Canaveral

În 22 februarie, Thales Alenia Space, o firmă comună între Thales (67%) și Leonardo (33%) prim contractor industrial pentru Euclid, împreună cu Agenția Spațială Europeană (ESA) au găzduit, pentru prima dată, o vizită a oamenilor de știință din Consorțiul Euclid la satelitul aflat în faza finală de integrare. Iconicul satelit Euclid va studia cele mai bine ascunse secrete ale Universului, respective material și energia întunecate.
În iunie 2022 ESA a selectat Consorțiul Euclid ca responsabil de instrumentele științifice, producerea de date și operarea aspectelor științifice ale misiunii. Misiunea este finanțată de agențiile spațiale naționale și de structurile de cercetare și este coordonată de Conducerea Consorțiului Euclid (ECL) și de Bordul Consorțiului Euclid (ECB).
Consorțiul Euclid cuprinde echipele care au realizat designul inițial și au propus misiunea Euclid ca un candidat în programul ESA Cosmic Visions cât și organizații noi care acum contribuie la implementarea proiectului. Paisprezece țări europene sunt în prezent implicate în activitățile consorțiului (Austria, Belgia, Danemarca, Finlanda, Franța, Germania, Italia, Țările de Jos, Norvegia, Portugalia, România, Spania, Elveția și Regatul Unit). Alți membrii include Canada și Statele Unite (prin NASA și câteva laboratoare americane), precum și câteva laboratoare japoneze.
În timpul misiunii sale de șase ani, Euclid va realiza harta structurii la scala mare a Universului până la distanțe de mai mult de 10 miliarde de ani lumină, pentru a arăta cun s-a extins și cum structura sa a evoluat în mai mult de trei sferturi din istoria sa. Misiunea este proiectată să răspundă la câteva dintre cele mai fundamentale întrebări ale cosmologiei modern, cum ar fi formarea Universului și de ce se extinde cu o viteză accelerate în loc să fie încetinit de atracția gravitațională.
Cu o înălțime de 4,7 m și o greutate la lansare de aproximativ 2 tone, Euclid va orbita în punctual Lagrange 2 din sistemul Soare – Pământ, la 1,5 milioane de km de la Pământ, pe partea opusă Soarelui. Va furniza 150.000 de imagini de înaltă rezoluție associate cu informații spectrale și cromatice, atingând aproape un petabyte pe an. Euclid este programat pentru lansare în iulie 2023, cu racheta SpaceX Falcon 9 de la Cape Canaveral, Florida.
Contribuția românească la misiunea Euclid este susținută de Institutul de Științe Spațiale în cadrul Înțelegerii Multi-Laterale (MLA) între ESA și Consorțiul Euclid.
Mai multă informație și câteva fotografii frumoase pot fi gasite pe: