O nouă caracteristică a spectrului energetic al razelor cosmice de energie ultra-înalta descoperită de Colaborarea Pierre Auger

Ilustrație artistică a unei jerbe atmosferice de particule inițiate în cascadă de o rază cosmică la Ob-servatorul Pierre Auger. Credit: A. Chantelauze/S. Staffi/L. Bret
Ilustrație artistică a unei jerbe atmosferice de particule inițiate în cascadă de o rază cosmică la Observatorul Pierre Auger. Credit: A. Chantelauze/S. Staffi/L. Bret

Spectrul energetic al celor mai energetice particule din Univers, raze cosmice de energie ultra înalta, este măsurat la Observatorul Pierre Auger cu o precizie fără precedent. În plus față de bine cunoscuta caracteristică a spectrului sub denumirea de “gleznă”, la o energie mai înalta este gasită o nouă întrerupere spectrală. Această nouă întrerupere în spectrul de energie poate fi explicată de o dependență a masei particulelor primare față de energie. Rezultatele Colaborării Pierre Auger sunt publicate în două noi articole (Phys. Rev. Lett. 125, 121106, 2020 și Phys. Rev. D 102, 062005, 2020) . 

Această determinare a spectrului energetic este unică, deoarece utilizează o expunere fără precedent, de peste 60000 km2 sr yr. Deasemeni, metoda de determinare a spectrului nu conține ipoteze despre compoziția de masă a particulei cosmice primare, sau detalii despre fizica interacțiilor hadronice ce au loc în timpul dezvoltării unei jerbe de particule secundare în atmosferă.

Razele cosmice de energie ultra-înalta (UHECRs – Ultra High Energy Cosmic Rays) sunt particule care ating energii de până la 1020 eV, cele mai înalte energii ale unor particule individuale cunoscute în Univers. Cu tehnologia disponibilă în prezent, acceleratorul LHC (Large Hadron Collider) ar trebui scalat la mărimea orbitei planetei Mercur pentru a putea accelera particule la aceste energii. Fluxul acestor particule este extrem de mic. Mai puțin de o particulă pe secol ajunge pe o suprafață de un kilometru pătrat. Procesele astrofizice care accelerează aceste particule la energii atât de mari, precum și sursele acestor emisii, sunt înca unele dintre misterele neelucidate ale Universului.

Colaborarea Pierre Auger, care reunește aproximativ 400 de oameni de știintă din 17 țări din întreaga lume, operează cel mai mare observator pentru radiații cosmice din lume: un detector hibrid realizat din peste 1600 de stații de suprafață, detectori bazați pe efectul Cerenkov, care acoperă o arie de 3000 km2. Această suprafață este observată și de 27 telescoape de fluorescență. Împreuna, toate aceste instrumente furnizează măsurători calorimetrice ale energiei jerbelor atmosferice și o evaluare indirectă a masei particulei primare care generează aceste jerbe. Combinând informația dată de spectrul energetic, compoziția de masă și distribuția direcției de sosire observată, pot fi derivate constrângeri importante asupra locației surselor acestor particule extraordinare.

Spectrul de energie al UHECRs a putut fi determinat cu o statistică foarte bună, deoarece au fost utilizate toate evenimentele înregistrate de Observatorul Pierre Auger până acum. Datorită acestei precizii fără precedent a măsurătorilor, o nouă caracteristică a spectrului, o întrerupere la aproximativ 1.3 * 1019 eV a putut fi identificată. Rezultatele sunt raportate în două publicații recente ale Colaborării Pierre Auger (Phys. Rev. Lett. 125, 121106, 2020 și Phys. Rev. D 102, 062005, 2020) și sunt illustrate în Figura 1, care arată o posibilă interpretare a fluxului observat și a compoziției de masă a UHECRs într-un scenariu în care sursele injectează particule cu o compoziție de masă dependentă de energie. Exemplul arătat în Figura 1 reprezintă o clasă particulară de modele, în care accelerarea particulelor depinde numai de rigiditatea lor (energia împărțită la sarcină). Ambundența elementelor chimice pare să fie dominată de nuclee cu masă intermediară, care sunt emise de surse cu un spectru de energie cu o pantă abruptă, care este apoi modificat de efectele propagării extragalactice. Într-un astfel de scenariu model, noua caracteristică din spectru ar apărea în mod natural datorită schimbării compoziției care apare la energiile respective.

Spectrul de energie observat determină deasemenea și densitatea de energie injectată sub forma de particule UHECRs de către sursele cu emisie continuă în spațiul extragalactic. Există câteva clase de Nuclee Galactice Active și Galaxii “Starburst”, pentru care au fost obținute indicații de anizotropie în direcțiile de sosire ale UHECRs, publicate în alte lucrări ale Colaborării Pierre Auger, care pot furniza această rată de energie. Această corelație reprezintă un important pas în identificarea surselor UHECRs.

Observatorul Pierre Auger se află momentan într-o etapă de modernizare de anvergură care constă în adăugarea de detectori scintilatori și antene radio deasupra fiecărei stații existente de detectori Cerenkov. Această modernizare va permite oamenilor de știință să obțină mai multe informații despre compoziția de masă a UHECRs, extinzând aceste studii la energiile cele mai înalte. La aceste energii, o posibilă prezență a nucleelor ușoare poate deschide o nouă fereastră către dezvoltarea unei metode, de căutare a surselor și de investigare a câmpurilor magnetice, sensibilă la compoziție.

România a aderat cu drepturi depline la Colaborarea Pierre Auger în 2014. Contribuția sa actuală la Auger vine din partea a trei instituții, precum: Institutul de Fizică și Inginerie Nucleară Horia Hulubei (IFIN-HH), Institutul de Științe Spațiale (ISS) și Universitatea Politehnica București (UPB). Înca din 2019, detectorii de fluorescență ai Observatorului Pierre Auger sunt monitorizați și operați integral, în baza unui plan de măsurători al colaborării, și de la distanță din România, de la ISS, care este “de la Măgurele, cu un pas mai aproape de experimentul din pampasul Argentinian”. Grupul Auger din ISS contribuie și la producția de simulări masive ale evenimentelor măsurate la Auger, utilizând calculul performant și distribuit din Organizatia Virtuala Auger GRID, precum și la diseminarea și conștientizarea fizicii studiate la Auger, contribuind astfel și la educație prin știință.

Figura 1. Fluxul tuturor particulelor cosmice cu energii ultra înalte măsurate la Observatorul Pierre Auger, scalat cu E3. Datele experimentale sunt comparate cu un model reprezentativ pentru surse, ilustrând corelația dintre energia la care se manifestă noua caracteristică spectrală, și compoziția de masă a particulelor primare dependentă de energie.

Persoană de contact: Dr. Gina Isar <gina.isar[at]spacescience.ro>, Responsabil Instituțional (ISS) Auger

New Feature Found in UHECR Energy Spectrum by the Pierre Auger Collaboration

Ilustrație artistică a unei jerbe atmosferice de particule inițiate în cascadă de o rază cosmică la Ob-servatorul Pierre Auger. Credit: A. Chantelauze/S. Staffi/L. Bret
Artistic illustration of a cosmic ray induced air shower at the Pierre Auger Observatory. Credit: A. Chantelauze/S. Staffi/L. Bret

The energy spectrum of the highest-energy particles in the Universe, ultra-high energy cosmic rays, has been measured with the Pierre Auger Observatory with an unprecedented precision. In addition to the well-known kink in the energy spectrum, typically referred to as the ankle, a new spectral break is found at somewhat higher energy. This new break in the energy spectrum can be explained by an energy-dependent mass composition of cosmic rays. The results are published in two related papers (Phys. Rev. Lett. 125, 121106, 2020 and Phys. Rev. D 102, 062005, 2020).

This determination of the energy spectrum is unique in having an unprecedented exposure of more than 60,000 km2 sr yr, in its method of determining the spectrum free of assumptions about the mass composition of the initial cosmic ray particle, and about details of the hadronic physics of air showers.

Ultra-high energy cosmic rays (UHECRs) are particles that reach energies of up to 1020 eV, the highest energies of individual particles known in the Universe. With our currently available technology, the LHC accelerator would have to be scaled to the size of the orbit of the planet Mercury to reach this energy. The flux of these particles is extremely small. Less than one particle per century arrives on an area of a square-kilometer. There is a long-standing quest to identify the sources of these particles and the processes that give them such exceptional energies.

The Pierre Auger Collaboration, a group of about 400 scientists from 17 countries from all over the world, is operating the world’s largest observatory for cosmic rays: a hybrid detector made of more than 1600 surface water-Cherenkov stations covering a 3,000 km2 area, which is overlooked by 27 fluorescence telescopes. Together, the different instruments provide calorimetric measurements of the energies of particle cascades produced by UHECRs in the atmosphere and an indirect evaluation of the mass of the primary particle. Combining the information on the energy spectrum, mass composition and the observed arrival direction distribution, important constraints on the sources of these extraordinary particles can be derived.

Analyzing the data collected by the Pierre Auger Observatory so far, the energy spectrum of UHECRs has been determined with very high statistics. Thanks to the unprecedented precision of the measurement, a new spectral feature, a break in the power law at about 1.3´1019 eV, has been identified. The results are reported in two recent publications (Phys. Rev. Lett. 125, 121106, 2020 and Phys. Rev. D 102, 062005, 2020) of the Pierre Auger Collaboration and are illustrated in Figure 1, which shows a possible interpretation of the observed flux and composition data of UHECRs in a scenario with sources that inject particles with a mass composition that changes with energy. The shown example represents a particular class of models, in which the acceleration of particles depends only on their rigidity (energy divided by charge). The abundance of nuclear elements appears to be dominated by intermediate-mass nuclei that are released from the sources with a very hard energy spectrum, which is modified by extragalactic propagation effects. In such a model scenario, the new feature in the spectrum would naturally occur due to the change of composition in the energy range of the new spectral break.

The observed energy spectrum also determines the energy density injected as UHECRs by continuously emitting sources into extragalactic space. Interestingly, some classes of Active Galactic Nuclei and Starburst Galaxies, for which indications of anisotropy have been obtained in different analyses of the Pierre Auger Collaboration, are expected to provide this energy production rate: an intriguing step forward in the quest for the UHECR sources.

The Pierre Auger Observatory is currently undergoing a large-scale upgrade by adding scintillation detectors and radio antennas on top of the existing water-Cherenkov detector stations. This will allow the scientists to obtain more information about the UHECR mass composition, extending it to the highest energies where a possible presence of light mass nuclei could open a new window to composition-sensitive searches for sources and studies of cosmic magnetic fields.

Romania has fully joined the Pierre Auger Collaboration in 2014, and its current contribution comes from the following three institutions: Institute of Physics and Nuclear Engineering Horia Hulubei (IFIN-HH), Institute of Space Science (ISS) and University Polytechnic Bucharest (UPB). Since 2019, fluorescence detectors of the Pierre Auger Observatory are fully monitored and operated, upon a common collaborative measurement calendar, also remotely from Romania, which is “from ISS-Măgurele a step forward to the experiment in the Argentinian pampas”. The Auger-group at ISS contributes also to the mass simulation production of Auger measured events using distributed computing in frame of Auger GRID VO (Virtual Organization), as well as to disseminating and awareness of physics studied at Auger, contributing thus to education through science.

Figure 1: All-particle flux of the highest energy cosmic rays as measured with the Pierre Auger Observatory, scaled by E3. The data are compared with a representative model scenario for sources, illustrating the correlation between the energy of the new spectral feature and the energy-dependent mass composition of the particles.

Contact person: Dr. Gina Isar <gina.isar[at]spacescience.ro>, (ISS) Institutional Responsible in Auger