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We theoretically investigate how the photoelectron angular distribution is altered by the introduction of a
dressing laser. The physical mechanism underlying this alteration is the so-called laser-induced continuum
structure; namely, a strong dressing laser induces quantum mechanical interference, the degree of which is
different for different ionization channels. Therefore the branching ratio into different ionization channels
changes as a function of laser detuning, and accordingly the photoelectron angular distribution is altered. After
a general argument, we present specific theoretical results for the K atom, which indeed exhibit significant
modification of the photoelectron angular distribution.
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I. INTRODUCTION

Since the first experimental demonstrations on the Na
atom some time agof1,2g, it is now well established that
strong radiative coupling between a bound state and a
smooth continuum through a coherent radiation field induces
modification in the smooth continuum. This is the so-called
laser-induced continuum structuresLICSd f3g. Lots of experi-
mental as well as theoretical work has been reported not only
on atomic systemsf4–10g but also on molecular systems
f11–13g. Although most of the work focuses on the variation
of the photoionization yield and the photodissociation prod-
ucts, nonlinear optical effects have also been investigated in
terms of the enhancement of third-harmonic generationf14g.
A little bit different scenario emerges if one considers the
spin degree of freedom of the photoelectrons, namely, spin-
polarized photoelectrons. In Ref.f10g, we theoretically in-
vestigated the spin polarization of photoelectrons using
LICS, and specific numerical examples were presented for
Rb and Cs.

It should be noted that the ionization line shape of LICS
typically exhibits an autoionizationlike profile. As the auto-
ionization profile is characterized by an asymmetric param-
eter, the ionization profile of LICS is also characterized in
terms of the asymmetric parameter because of the similarity
between them. If there is more than a single ionization on
dissociation channel to be coupled through LICS, it seems to
be a reasonable thought that it might be possible to control
the branching ratio into different ionization and dissociation
channelsf7,9g. To be more specific, let us consider the case
in which an initially occupied bound state and an initially
unoccupied state, say, 4p and 6p of the K atom, respectively,
are coupled by two lasers whose frequencies nearly satisfy
two-photon resonance. In order to simplify the argument, we
neglect spin-orbit interactions for a moment. Obviously there
are two continua involved in the process,es anded, wheree
denotes the continuum energy. Since photoelectrons ejected

into thes andd continua have different angular distributions,
we expect that the modification of the branching ratio
through LICS may result in the modification of the photo-
electron angular distributionsPADd.

In this paper, we theoretically investigate the effects of
LICS on PAD with specific numerical examples for the K
atom. Resolvent and amplitude equations are employed to
describe the time-dependent dynamics of the process. Rel-
evant dipole matrix elements are computed using quantum
defect theory. Since the spin angular momentum and its pro-
jection along the quantization axis affect the PAD, spin-orbit
interactions are taken into account for all bound and con-
tinuum states involved in the process. As we will show in the
following sections, the influence of the dressing laser on
PAD is significant. The branching ratio of ionization into the
two continua,s andd waves, turns out to vary as a function
of laser detuning, and, as we expect, the variation of PAD is
most significant at the laser detunings where the branching
ratio becomes a maximum or minimum.

II. THEORY

A. Model

The system we consider is described in Fig. 1. We assume
that K atoms are excited by the linearly polarized nanosec-
ond auxiliary laser to the 4p state of the K atom prior to the
interaction with the probe and dressing lasers with frequen-
ciesvp andvd, respectively. Depending on the frequency of
the auxiliary laser, we can selectively excite 4p1/2 or 4p3/2
with magnetic sublevelsmj = ±1/2, which will serve as an
initial stateu0l with energyE0 in this work. Now, the initially
populated stateu0l and initially empty stateu1l with energy
E1, which are 6p1/2 or 6p3/2, are coupled by the linearly
polarized probe and dressing lasers whose frequencies nearly
satisfy two-photon resonance. Since we assume that the po-
larization axes of both lasers are parallel, the dynamics of the
4p1/2-6p1/2 s4p3/2-6p3/2d system withmj =1/2 and −1/2 are
completely symmetric. Therefore, we consider the system
behavior withmj =1/2 only. The radiative lifetimes of 4p1/2*Email address: t-nakajima@iae.kyoto-u.ac.jp
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and 4p3/2, and 6p1/2 and 6p3/2, are about 26 and 345 ns,
respectively, and will be phenomenologically included in the
following analysis.

For simplicity, we further assume that the systems
4p1/2-6p1/2 and 4p3/2-6p3/2 are isolated from each other.
Whether we may treat each system separately or not depends
on the pulse durations and intensities of the lasers: If the
laser intensities are sufficiently strong to induce a broad Rabi
frequency to cover the fine structure of 4p and 6p, or if the
ac Stark shifts are so large as to cause shifts as large as the
fine structure splitting, we have to treat all 4p1/2, 4p3/2, 6p1/2,
and 6p3/2 states on equal footing. Furthermore, if the pulse
duration is short enough to overlap the fine structure of 4p or
6p, we have to treat all four states on an equal footing as
well. However, as long as we use nanosecond lasers with
appropriate intensities and detunings, it is perfectly valid to
treat each 4p1/2-6p1/2 and 4p3/2-6p3/2 system separately,
which will greatly simplify the analysis. As we will justify in
the beginning of Sec. III it is indeed this intensity and detun-
ing regime we focus on in this paper.

B. Time-dependent amplitude equations

In order to describe all the dynamics involved in Fig. 1 in
a time-dependent manner, we employ a resolvent operator
formalism. Now, we start with the resolvent equation
f15,16g,

sz− H0 − Dspd − DsdddG = 1, s1d

where H0 is a field-free atomic Hamiltonian, andDspd and
Dsdd are the dipole operators for the probe and dressing
fields, respectively. Following the standard procedure
f15,16g, a set of resolvent equations is obtained as follows:

Fz− E0 − "vp − sS0
spd + S0

sddd + i
G0

spd

2
GG0 − VS1 −

i

q
DG1 = 1,

s2d

− VS1 −
i

q
DG0 + Fz− E1 − "vd − sS1

spd + S1
sddd

+
i

2
sG1

spd + G1
sdddGG1 = 0. s3d

G j
sad’s are the ionization widths of stateu jl sj =0 or 1d by the

probe sa=pd or dressing lasersa=dd into all the possible
continua. In particular,G1

spd is an incoherent ionization width
from stateu1l by the probe laser, as described by the dashed
line in Fig. 1. V is an effective two-photon Rabi frequency
betweenu0l and u1l, andq is an asymmetry parameter. The
Sj

sad’s are the ac Stark shifts of stateu jl by laserp or d. Note
that all the continuum statesucl have already been eliminated
in Eqs. s2d and s3d. In the above equations the two-photon
Rabi frequencyV is a sum of the two-photon Rabi frequen-
cies through thees anded continua, i.e.,

VS1 −
i

q
D = o

b=c1,c2

VbS1 −
i

qb
D . s4d

As for the equation for the continuum associated with coher-
ent ionization, it reads

− Dc0
spdG0 − Dc1

sddG1 + sz− EcdGc
coh= 0, s5d

where Dcj
sad sj =0,1 anda=p,dd are the bound-free matrix

elements from stateu jl by the probe or dressing laser. The
superscript ofGc

coh implies that it is a resolvent matrix asso-
ciated with the coherent continuum. To avoid complication,
we have phenomenologically included incoherent ionization
asG1

spd in Eq. s3d.
For the time-varying laser intensities, we have to convert

the resolvent equations, Eqs.s2d, s3d, ands5d, into amplitude
equations. They read

u̇0 = −
1

2
sg0 + G0

spddu0 − iVS1 −
i

q
Du1, s6d

u̇1 = Fisdstatic+ dStarkd −
1

2
sg1 + G1

spd + G1
sdddGu1

− iVS1 −
i

q
Du0, s7d

u̇c
coh= − idcuc

coh− iDc0
spdu0 − iDc1

sddu1, s8d

where theuj’s s j =0,1,cd are the probability amplitudes of
statesu jl. The superscript ofuc implies that it is a coherent
continuum.dstatic is the static two-photon detuning defined
by dstatic=sE0+"vpd−sE1+"vdd, and dStark is the total dy-
namic ac Stark shift defined asdStark=sS0

spd+S0
sddd−sS1

spd

+S1
sddd. Djk

sad’s are the bound-free matrix elements by lasera
sa=p or dd from the bound stateu jl to the continuumucl,
which are connected to the partial ionization widths by the

FIG. 1. Level scheme. 4p and 6p states of K atom are coupled
by the linearly polarized probe and dressing lasers. With the laser
intensities and the detuning range we have chosen for the present
study, it is possible to consider each set of the fine-structure-
resolved system, the K 4p1/2-6p1/2 system and the K 4p3/2-6p3/2

system. Incoherent ionization from stateu1l by the probe laser is
also shown by the dashed line.
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relationG jk
sad=2puDjk

sadu2. g j s j =0,1d are the phenomenologi-
cally introduced spontaneous decay rates of statesu jl. In the
following, we introduce the total detuningds=dstatic+dStarkd,
and the total decay rates of statesu0l and u1l are rewritten to

be G̃0 and G̃1, i.e., G̃0;g0+G0
spd and G̃1;g1+G1

spd+G1
sdd.

For the calculation of ionization yield into each con-
tinuum, it turns out that the following density matrix equa-
tions associated with the coherent continuum are useful:

ṙcc
coh= 2Dc0

spd Im r0c
coh+ 2Dc1

sdd Im r1c
coh, s9d

ṙ0c
coh= Sidc −

1

2
G̃0Dr0c

coh+ iDc0
spd* uu0u2 + iDc1

sdd*u0u1
* , s10d

ṙ1c
coh= Fisd − dcd −

1

2
G̃1Gr1c

coh+ iDc0
spd*u1u0

* + iDc1
sdd* uu1u2.

s11d

By setting the time derivatives of Eqs.s10d and s11d to be
zero and adiabatically eliminatingr0c

coh andr1c
coh in Eq. s9d, we

find

ṙcc
coh= G̃0

uD0c
spdu2uu0u2 + Dc1

sdd*Dc0u0u1
*

dc
2 + sG̃0/2d2

+ G̃1
Dc0

spd*Dc1
sddu0

*u1 + uDc1
sddu2uu1u2

sd − dcd2 + sG̃1/2d2
. s12d

Furthermore, because we may safely assume thatD0c
spd and

Dc1
sdd are approximately constant over alldc, they may be

pulled out of the integral when we perform integration over
dc. Therefore, defining the ionization yield through the co-
herent channel asRc

coh, we obtain the expression for its time
derivative to be

dRc
coh

dt
=E ddcṙcc

coh

= G̃0suD0c
spdu2uu0u2 + Dc1

sdd*Dc0
spdu0u1d E ddc

1

dc
2 + sG̃0/2d2

+ G̃1suDc1
sddu2uu1u2 + Dc0

spd*Dc1
sddu0

*u1d

3E ddc
1

sd − dcd2 + sG̃1/2d2
= 2puD0c

spdu0 + Dc1
sddu1u2.

s13d

Hence

Rc
coh= 2pE dtuD0c

spdu0 + Dc1
sddu1u2, s14d

which is equivalent to Eqs.s9d ands10d in Ref. f10g. If there
are two coherent continua, extension of the above procedure
to the case of two continua is rather straightforward, and the
result is written as

Rcoh= 2pE dt o
c=c1,c2

uD0c
spdu0 + Dc1

sddu1u2. s15d

Including incoherent ionization, we finally obtain the total
ionization yieldR as

R= Rcoh+ Rinc

= 2pE dtF o
c=c1,c2

uD0c
spdu0 + Dc1

sddu1u2 + o
c=c3,c4

uDc1
spdu1u2G .

s16d

Given the laser intensity we have chosen for the numerical
results, however, the contribution of incoherent ionization by
the probe laser turns out to be negligibly small.

C. Photoelectron angular distribution

To derive all equations in the previous subsection, we
have implicitly assumed that the angle integration has al-
ready been performed for the bound-free dipole moments.
For the purpose of calculating photoelectron angular distri-
bution, however, we need equations before angle integration.
Accordingly, it is necessary to examine Eqs.s8d–s11d more
carefully. Using a partial wave expansion, the continuum of
alkali-metal atoms can be represented by

ukW ;msl = o
l,ml

alml
ukW ; lmllu1/2msl

= o
l,ml,j

alml
s− 1dl−1/2+ml+msÎ2j + 1

3S l 1/2 j

ml ms − sml + msd
DukW ;slsd jmjl, s17d

where kW is the wave vector of the photoelectron,alml
=4pi le−idlYlml

sQ ,Fd, and dl is the phase shift, which is a
sum of the Coulomb phase shift and the scattering phase
shift. For our specific casessee Fig. 1d, the partial waveses
anded are of importance since they contribute to the bound-
free matrix elements from statesu0l and u1l. After the angle
integration, those two continua can be treated separately
since they are orthogonal to each other, as we have already
implied in Eq.s15d. However, before angle integration, they
interfere differently at different angles, and cannot be treated
separately. Therefore, the correct expression of the photo-
electron yield before angle integration is

dR

dV
= 2pE dtFU o

c=es,ed

fD0c
spdsQ,Fdu0 + Dc1

sddsQ,Fdu1gU2

+ U o
c=es,ed

Dc1
spdsQ,Fdu1U2G , s18d

where the second term in Eq.s18d represents the contribution
due to the incoherent ionization channel. Clearly, when the
angle integration is performed fordR/dV, some of the cross
terms in Eq.s18d vanish due to the orthogonality of the
spherical harmonics, and Eq.s18d is reduced to Eq.s16d.
Having understood the above argument, it is easy to write
down the following formula for the PAD:
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dR

dV
= 2pE dt o

ms=±1/2
fukkW ;msuDspdu0lu0 + kkW ;msuDsddu1lu1u2

+ ukkW ;msuDspdu1lu1u2g. s19d

Finally we obtain the general expression of the PAD, appli-
cable for both 4p1/2-6p1/2 and 4p3/2-6p3/2 systems, as

dR

dt dV
= 0.589p o

ms=±1/2
fuÎG0

sp,msdsQ,Fdu0

+ ÎG1
sd,msdsQ,Fdu1u2 + uÎG1

sp,msdsQ,Fdu1u2g,

s20d

with 0.589p being a conversion factor for the appropriate
normalization; we have introduced the differential ionization
widths defined as

G j
sa,+1/2dsQ,Fd = U−

1

3
Rjes

sadeidsY00sQ,Fd

+
2

3Î5
Rjed

sadeiddY20sQ,FdU2

Ia, s21d

G j
sa,−1/2dsQ,Fd = U−Î 2

15
Rjed

sadeiddY21sQ,FdU2

Ia. s22d

In Eqs.s21d and s22d, Rjes
sad s j =4p,6pd, etc., represents a ra-

dial bound-free matrix element from statej to the continuum
es by lasera sa=p or dd and evaluated in atomic units, and
the laser intensitiesIp andId are in W/cm2. For the coherent
continuum, the relevant phase shifts areds=1.937 anddd=
−6.574, which are the sums of the Coulomb phase shifts
d s

C=−4.924 andd d
C=−7.551 and the scattering phase shifts

pms=6.861 andpmd=0.977 withml sl =s,dd being the quan-
tum defects estimated from the linear extrapolation of the
bound Rydbergs andd series of the K atom to the continuum
energy of interest. Similar evaluation of phase shifts has also
been carried out for the incoherent continuum. Equations20d
together with Eqs.s21d and s22d gives the PAD for the
4p1/2-6p1/2 system with appropriate normalization such that
the angle-integrated quantity becomes identical to the total
ionization yield calculated with Eq.s16d. Equations20d is
also applicable for the PAD of the 4p3/2-6p3/2 system only if
the differential ionization widths are employed, which read

G j
sa,+1/2dsQ,Fd = UÎ2

3
Rjes

sadeidsY00sQ,Fd

−
2Î10

15
Rjed

sadeiddY20sQ,FdU2

Ia, s23d

G j
sa,−1/2dsQ,Fd = U−

1
Î15

Rjed
sadeiddY21sQ,FdU2

Ia. s24d

III. NUMERICAL RESULTS AND DISCUSSION

In order to solve the set of time-dependent amplitude
equations Eqs.s6d and s7d, we need atomic parameters such

as the Rabi frequencyV, the asymmetry parameterq, the
ionization widthsG, and the ac Stark shiftsS. All the neces-
sary single- and effective two-photon dipole matrix elements
are obtained using quantum defect theory and the Green
function technique. Calculated atomic parameters are listed
in Tables I and II for the K 4p1/2-6p1/2 and 4p3/2-6p3/2 sys-
tems, respectively. By substituting those parameters into Eqs.
s6d ands7d, we can easily solve those equations for the given
peak intensities, detunings, and the temporal profile of the
lasers. In this work we have assumed that the temporal pro-
file of the probe and dressing lasers is Gaussian and delayed
from the auxiliary laser by 30 ns so that the influence of the
auxiliary laser, other than the pumping of stateu0l, does not
have to be taken into account. In all the numerical results
presented in this section, the zero point of the total detuning,
d=0, has been chosen at the peak intensity so thatdstatic
+d Stark

max =0; namely,d=0 means thatdstatic=−d Stark
max . Once the

solution is obtained foru0std andu1std, the partial as well as
total ionization yield into each continuum can be calculated
from Eqs. s14d and s16d. In the following subsections, we
present results for the K 4p1/2-6p1/2 and 4p3/2-6p3/2 systems.

Now, as promised in Sec. II, it is time to justify why the
two systems K 4p1/2-6p1/2 and 4p3/2-6p3/2, may be treated
separately. As one sees from Tables I and II, the largest con-
tribution of the ac Stark shift comes from the dressing laser
for stateu0l. Furthermore, both statesu0l and u1l shift to the
same direction, and what matters is the relative shift between
the K 4p1/2-6p1/2 and 4p3/2-6p3/2 systems, which is about
280Id srad/sd. Given the maximum intensity of the dressing
laser considered in this work,Id=500 MW/cm2, the relative
shift of both systems is 280Id=1.431011 srad/sd, which is
less than 1 cm−1. Knowing the fact that the fine structure
energy splittings of 4p and 6p are 58 and 8 cm−1, respec-

TABLE I. Atomic parameters for the K 4P1/2-6p1/2 system.V in
rad/s,G in s−1, S in rad/s, andIp and Id in W/cm2.

V −8.12ÎIpId q −0.91

Ves 3.47ÎIpId qes 1.71

Ved −11.58ÎIpId qed −1.69

G0
spd 11.59Ip S0

spd 14.1Ip

G1
sdd 28.04Id S0

sdd 947.5Id

G1
spd 3.66Ip S1

spd 21.04Ip

S1
sdd 86.9Id

TABLE II. Atomic parameters for the K 4P3/2-6p3/2 system.V
in rad/s,G in s−1, S in rad/s, andIp and Id in W/cm2.

V −5.80ÎIpId q −0.5

Ves 6.94ÎIpId qes 1.71

Ved −12.74ÎIpId qed −1.69

G0
spd 14.46Ip S0

spd 12.3Ip

G1
sdd 38.57Id S0

sdd 1231.8Id

G1
spd 4.32Ip S1

spd 20.8Ip

S1
sdd 97.0Id
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tively, the ac Stark shifts are still much smaller than the
energy splittings. Since the LICS structure we see in the
following subsections appears in the detuning range of a few
gigahertz, which is less than 1 cm−1, it is clear that we may
treat each system separately.

A. K 4p1/2-6p1/2 system

One of the major obstacles to observing clear LICS is the
ac Stark shift, since it causes time-dependent dynamic detun-
ing during the pulse. From Table I it can be seen thatS0

sdd is
significantly large. ForId=100 MW/cm2, it is as large as
0.5 GHz and much larger than the Rabi frequency and ion-
ization widths. If the pulse durations of the probe and dress-
ing lasers are comparable, the subtle structure of LICS as a
function of total detuning may be easily smeared out. Indeed,
for the case of probe pulse durationtp=4 ns ffull width at
half maximumsFWHMdg and the dressing laser pulse dura-
tion td=4 nssFWHMd with the peak intensities ofIp=1 and

Id=100 MW/cm2, we do not see so much structure, as
shown in Fig. 2. To circumvent this problem, we have
changed the pulse durations to betp=1 ns sFWHMd andtd
=10 nssFWHMd with the same peak intensities. The result is
shown in Fig. 3sad. As expected, the LICS profile becomes
more eminent. For the purpose of plotting PAD, the branch-
ing ratio, which is defined as a ratio of the yield intod
continuum divided by that into thes continuum, is also plot-
ted in Fig. 3sbd. Since PAD is very different for thes andd
electrons, the variation of the branching ratio is a good indi-
cator for the variation of PAD. The three-dimensional PAD is
shown in Figs. 4sad–4scd for the three specific cases, corre-
sponding to the branching ratios at far off resonancesd=
−4 GHzd, at the minimumsd=0.2 GHzd, and at the maxi-
mum sd=0.64 GHzd. It is clear that the PADs are signifi-
cantly different at different detunings.

Frequently PAD is represented as a superposition of
cos2n u functions, namely,

dR

dV
= o

n=0,1,2,...
b2n cos2n u, s25d

whereb2n is called the asymmetry parameter and gives the
deviation of PAD from the spherically symmetric distribu-
tion which corresponds tob2n=0. For the case of the
4p1/2-6p1/2 system, the asymmetry parameters are nonzero
only up ton=1. It would be instructive to plot the asymme-
try parameters as a function of detuning. For that purpose,
we rewrite the spherical harmonics in Eq.s20d in terms of the
cos2n u functions. After some straightforward algebra, we ob-
tain

b0 = 0.589E dtFU1

2
A −

Î5

4
BU2

+ U1

2
C −

Î5

4
DU2G ,

s26d

b2 = 0.589E dtF3Î5

4
ResAB* d +

15

16
uBu2

+
3Î5

4
ResCD * d +

15

16
uDu2G s27d

where

A = −
1

3
eidssR4pes

spd ÎIpu0 + R6pes
sdd ÎIdu1d, s28d

B =
2

3Î5
eiddsR4ped

spd ÎIpu0 + R6ped
sdd ÎIdu1d, s29d

C = −
1

3
eidsR6pes

spd ÎIpu1, s30d

D =
2

3Î5
eiddR6ped

spd ÎIpu1. s31d

Figure 5 shows the variation ofb0 andb2/b0 as a func-
tion of detuningd at three different dressing laser intensities

FIG. 2. sad Total and partial ionization yields into eaches anded
continuum, andsbd the branching ratio between them for the K
4p1/2-6p1/2 system as a function of two-photon detuningd. Pulse
durations and peak laser intensities are chosen to betp=4 ns and
Ip=1 MW/cm2, andtd=4 ns andId=100 MW/cm2, for the probe
and dressing lasers, respectively.

FIG. 3. Same as Fig. 2 only with the different pulse durations of
tp=1 ns and td=10 ns for the probe and dressing lasers,
respectively.
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Id=100, 200, and 500 MW/cm2 with the probe laser inten-
sity and the pulse duration fixed to beIp=1 MW/cm2 and
tp=1 ns andtd=10 ns. As we have already seen in Figs. 3
and 4, the asymmetry parameters vary significantly near
resonance. In addition, the higher the dressing laser intensity
is, the broader the structure becomes. This is simply due to
the broader ionization width forG1 which is similar to the
case of broad autoionization width. It is interesting to note
that not only the ionization spectra but also the variation of
b2n also exhibit an asymmetric profile.

B. K 4p3/2-6p3/2 system

We now turn to the case of the 4p3/2-6p3/2 system. From
Table II, it is seen that the ac Stark shiftS0

sdd for the
4p3/2-6p3/2 system is even larger than that for the 4p1/2
-6p1/2 system. This is basically due to the different angular
coefficients between the two systems. For a similar reason as

explained in Sec. III A, it is clear, as we have already seen in
Fig. 2, that the pulse duration for the dressing laser must be
substantially longer than that for the probe laser to observe a
nice LICS profile. Therefore, all the results we show in this
subsection is fortp=1 ns andtd=10 ns.

Figure 6 shows the variation of the total as well as partial
ionization yield as a function of detuning. The structure in
Fig. 6sad is similar to that in Fig. 3sad, but not quite. This is
due to the fact that, althoughqes and qed are the same for
both systems as one obviously sees from Tables I and II, the
q itself is different because of the differentV’s in both sys-
tems. This can be easily checked using Eq.s4d. More inter-
estingly, the variation of the branching ratio shown in Fig.
6sbd is substantially smaller than that shown in Fig. 3sbd.
Therefore, we intuitively expect that the modification of PAD
might be smaller for this system. In order to examine our
speculation, we plot the three-dimensional PAD in Fig. 7 for

FIG. 4. Three-dimensional photoelectron angular distribution
for the K 4p1/2-6p1/2 system at three different two-photon detunings
d=−4, 0.2, and 0.64 GHz. Pulse durations and peak intensities are
tp=1 ns andIp=1 MW/cm2 for the probe laser, andtd=10 ns and
Ip=100 MW/cm2 for the dressing laser.

FIG. 5. Variations of the asymmetry parametersb0 and b2 for
the K 4p1/2-6p1/2 system as a function of two-photon detuningd for
the three different dressing laser intensitiesId=100, 200, and
500 MW/cm2. All other parameters are kept the same as those for
Fig. 3, i.e.,tp=1 ns,td=10 ns, andIp=1 MW/cm2.

FIG. 6. sad Total and partial ionization yields into eaches anded
continuum, andsbd the branching ratio between them for the K
4p3/2-6p3/2 system as a function of two-photon detuningd. Pulse
durations and peak laser intensities aretp=1 ns and Ip

=1 MW/cm2, and td=10 ns andId=100 MW/cm2, for the probe
and dressing lasers, respectively.
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the three specific detunings, corresponding to the branching
ratios at far off resonance,d=−4 GHz, at the minimum,d
=0.12 GHz, and at the maximum,d=0.6 GHz. The modifi-
cation of the 3D PAD is more than we expect: Variation of
the sidelobe, which is absent for the 4p1/2-6p1/2 system be-
causeb4=0, is striking.

The asymmetry parametersb2n are now nonzero up ton
=2. After some algebra, we obtain

b0 = 0.589E dtFU1

2
A −

Î5

4
BU2

+ U1

2
C −

Î5

4
DU2G ,

s32d

b2 = 0.589E dtF3Î5

4
ResAB* d −

75

64
uBu2

+
3Î5

4
ResCD * d −

75

64
uDu2G , s33d

b4 = 0.589E dt
135

64
fuBu2 + uDu2g, s34d

where

A =
Î2

3
eidssR4pes

spd ÎIpu0 + R6pes
sdd ÎIdu1d, s35d

B = −
2Î10

15
eiddsR4ped

spd ÎIpu0 + R6ped
sdd ÎIdu1d, s36d

C =
Î2

3
eidsR6pes

spd ÎIpu1, s37d

D = −
2Î10

15
eiddR6ped

spd ÎIpu1. s38d

The variation ofb0, b2/b0, andb4/b0 is plotted in Fig. 8.
The highest-order coefficientb4 is found to vary rather sig-
nificantly, and we attribute this variation as the main reason
for the striking variation of the 3D PAD we saw in Fig. 7.

IV. SUMMARY

In summary, we have studied the modification of the pho-
toelectron angular distribution by the introduction of a dress-
ing laser. The role of the dressing laser is to induce so-called
laser-induced continuum structure, thereby altering the
branching ratio into different ionization channels. Since the
partial photoelectron angular distribution is different for dif-
ferent continua, we expect alteration of the photoelectron
angular distribution by the introduction of the dressing laser.

Specific numerical results are presented for the K
4p1/2-6p1/2 and 4p3/2-6p3/2 systems. Although it turned out
that the photoelectron angular distributions are quite differ-
ent for both systems, the alteration of the photoelectron an-
gular distribution is striking, as we expect. Special care has
to be taken, however, to avoid the undesired dynamic detun-
ing originating from the ac Stark shift, since the dynamic
detuning during the pulse can smear out the effects. For that
reason, it is very desirable, as we have demonstrated in this
paper, that the pulse duration of the probe laser is shorter
than that of the dressing laser so that atoms experience prac-
tically static ac Stark shifts due to the dressing laser during
the probe pulse.

FIG. 7. Three-dimensional photoelectron angular distribution
for the K 4p3/2-6p3/2 system at three different two-photon detunings
d=−4, 0.12, and 0.6 GHz. Pulse durations and peak intensities are
tp=1 ns andIp=1 MW/cm2 for the probe laser, andtd=10 ns and
Ip=100 MW/cm2 for the dressing laser.

FIG. 8. Variations of the asymmetry parametersb0, b2, andb4

for the K 4p3/2-6p3/2 system as a function of two-photon detuningd
for the three different dressing laser intensitiesId=100, 200, and
500 MW/cm2. All other parameters are kept the same as those for
Fig. 6, i.e.,tp=1 ns,td=10 ns, andIp=1 MW/cm2.
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