Rezultatele curente ale experimentului MoEDAL în căutarea de monopoli magnetici

Ilustrație artistică a producerii unei perechi monopol-antimonopol prin efectul Schwinger. Credits: J. Pinfold – MoEDAL Collaboration

Recent, în Februarie 2022, Colaborarea MoEDAL (Monopole and Exotics Detection at LHC), din care face parte și un grup de cercetători ai Institutului de Științe Spațiale (ISS), a publicat articolul “Search for magnetic monopoles produced via the Schwinger mechanism”, Nature 602 63-67 (2022).

Articolul prezintă primele limite experimentale privind secțiunile de producere a monopolilor magnetici prin mecanismul Schwinger precum și masele acestora. Mecanismul Schwinger constă în extragerea unei perechi monopol-antimonopol din vid, în câmpurile magnetice extreme produse în ciocnirile periferice ale nucleelor ultrarelativiste.

Rezultatele publicate au fost obținute cu un sub-detector MoEDAL, “capcana de monopoli”, constând în bare de aluminiu expuse in Noiembrie 2018 în apropierea punctului de interacție a nucleelor de plumb, la o energie în centrul de masă de 5,02 TeV. Ulterior, barele au fost scanate cu un magnetometru superconductor de mare sensibilitate.

Grupul din ISS, care a contribuit la finalizarea articolului (Nature 602, 63–67, 2022), are în responsabilitate menținerea bibliotecilor de programe de analiză utilizate în colaborare, și în particular, determinarea acceptanțelor detectorilor MoEDAL. Activitatea grupului MoEDAL-ISS a fost finanțată de Institutul de Fizică Atomică, în cadrul Programului CERN-RO.

MoEDAL este un experiment de pionierat la marele accelerator de particule hadronice LHC (Large Hadron Collider) de la CERN, conceput pentru a căuta avataruri puternic ionizate ale noii fizici, cum ar fi monopoli magnetici sau particule masive (pseudo-) stabile încarcate. Mai multe detalii despre experimentul MoEDAL sunt disponibile aici.

Persoană de contact ISS: Dr. Vlad Popa <vpopa[at]spacescience[dot]ro>

Limitele experimentale publicate de Colaborarea MoEDAL în articolul din Nature

Current results of the MoEDAL experiment in search of magnetic monopoles

Artistic illustration for the production of a monopole-antimonopole pair via the Schwinger effect. Credits: J. Pinfold – MoEDAL Collaboration

Recently, in February 2022, the MoEDAL Collaboration (Monopole and Exotics Detection at LHC), of which it is part a group of scientific researchers from the Institute of Space Science (ISS), has been published the article “Search for magnetic monopoles produced via the Schwinger mechanism”, Nature 602 63-67 (2022).

The article shows the first experimental limits on the production sections of the magnetic monopoles via the Schwinger mechanism, and on their masses. The Schwinger mechanism consists in the extraction of monopole-antimonopole pairs in vacuum, in the extreme magnetic fields produced in the peripheral collisions of ultra-relativistic nuclei.

The published results have been obtained with a sub-detector MoEDAL, “ monopole trapper”, consisting of alumina bars exposed in November 2018 nearby the interaction point of lead nuclei, at a center of mass energy of 5.02 TeV. After, the bars were scanned with a highly sensitive superconductor magnetometer.

The ISS group, which has been contributed to the article (Nature 602, 63–67, 2022), has the responsibility to maintain the libraries of analysis programs used in the collaboration, and in particular, to determine the MoEDAL detectors acceptances. The activity of the MoEDAL-ISS group is been funded by the Institute of Atomic Physics, in frame of the CERN-RO Program.

MoEDAL is a pioneering experiment at LHC/CERN designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. More about the MoEDAL experiment is available here.

Contact Person ISS: Dr. Vlad Popa <vpopa[at]spacescience[dot]ro>

 

The experimental limits published by the MoEDAL Collaboration in the Nature article.

Women Physicists in Astrophysics, Cosmology and Particle Physics

Webinar Series Universe Logo
Webinar Series Universe Logo

On Wednesday, 17 November 2021, MDPI and the Journal Universe organized the 3rd webinar on Universe, entitled „Women Physicists in Astrophysics, Cosmology and Particle Physics”.

The webinar highlighted the Special Issue devoted to this subject and the results presented in it.

In this first webinar, were hosted four talks presenting new results and reviews covering different areas of high current interest regarding theoretical and experimental astro- and cosmo-particle physics. The main topics are:

1) Chair Introduction: Women Physicists in Astrophysics, Cosmology and Particle Physics by Prof. Dr. Norma G. Sanchez, CNRS, PSL-Paris Observatory and Chalonge de Vega International School Center, Paris, France;

2) Dark Matter Sterile Neutrino from Scalar Decays by Dr. Lucia Aurelia Popa, Institute of Space Science, Magurele, Ilfov, Romania;

3) New Advancements in AdS/CFT (Anti-de Sitter/Conformal Field Theory) in Lower Dimensions by Professor Yolanda Lozano, Department of Physics, University of Oviedo and ICTEA, Oviedo, Spain;

4) Superconformal Line Defects in Three Dimensions by Professor Silvia Penati, Department of Physics, University of Milano-Bicocca and INFN, Milano, Italy;

5) Environmental High-Energy Astrophysics in the context of space missions such as LISA, Solar Orbiter and JWST, and its implications for space weather science by Professor Catia Grimani, University of Urbino “Carlo Bo”, Urbino and INFN, Florence, Italy.

The webinar was offered via Zoom and required registration to attend. The full recording can be found on Sciforum website and YouTube.

Contact person (ISS): Dr. Lucia A. Popa <lpopa@spacescience[dot]ro>

Femei Fiziciene în Astrofizică, Cosmologie și Fizica Particulelor

Webinar Series Universe Logo
Webinar Series Universe Logo

În data de 17 Noiembrie 2021, MDPI împreună cu Jurnalul Universe a organizat webinar-ul Universe cu ediția a treia, intitulat “Femei Fiziciene în Astrofizică, Cosmologie și Fizica Particulelor”.

Webinar-ul a evidențiat numărul special al Jurnalului Universe dedicat acestui subiect și rezultatelor prezentate în acesta.

În acest prim webinar, au fost susține patru prelegeri cu prezentarea noilor rezultate din diferite arii cu înalt interes actual privind fizica teoretică și experimentală din domenii precum: Astrofizică, Cosmologie și Fizica Particulelor. Principalele subiecte abordate sunt următoarele:

1) Chair Introduction: Women Physicists in Astrophysics, Cosmology and Particle Physics by Prof. Dr. Norma G. Sanchez, CNRS, PSL-Paris Observatory and Chalonge de Vega International School Center, Paris, France;

2) Dark Matter Sterile Neutrino from Scalar Decays by Dr. Lucia Aurelia Popa, Institute of Space Science, Măgurele, Ilfov, Romania;

3) New Advancements in AdS/CFT (Anti-de Sitter/Conformal Field Theory) in Lower Dimensions by Professor Yolanda Lozano, Department of Physics, University of Oviedo and ICTEA, Oviedo, Spain;

4) Superconformal Line Defects in Three Dimensions by Professor Silvia Penati, Department of Physics, University of Milano-Bicocca and INFN, Milano, Italy;

5) Environmental High-Energy Astrophysics in the context of space missions such as LISA, Solar Orbiter and JWST, and its implications for space weather science by Professor Catia Grimani, University of Urbino “Carlo Bo”, Urbino and INFN Florence, Italy.

Webinar-ul a fost oferit prin Zoom și a necesitat înregistrare pentru participare. Întreaga înregistrare a evenimentului este disponibilă pe site-ul Sciforum și YouTube.

Persoană de contact (ISS): Dr. Lucia A. Popa <lpopa@spacescience[dot]ro>

Expoziția Fusion:AIR 2021 – Structuri convertibile

4 instalații multimedia transpun concepte științifice în artă

Fusion AIR, unicul proiect românesc de rezidențe artistice în institutele de cercetare, inițiat și organizat de Asociația Qolony (Colonia pentru Artă și Știință), se apropie de final, iar la sfârșitul săptămânii acesteia va avea loc deschiderea expoziției ce reunește lucrările celor patru artiști. Evenimentul va avea loc pe datele de vineri, 11 iunie, și sâmbătă, 12 iunie 2021, cu începere de la ora 14.30, în cel mai nou spațiul expozițional din capitală, /SAC @ MALMAISON situat în strada Plevnei nr. 137C, et. 2.  Expoziția va fi deschisă cu acces liber, timp de trei săptămâni, până pe data de 3 iulie, inclusiv; program de vizitare: miercuri – vineri, orele 15:00 – 19:00.

Vernisajul expoziției va avea loc în prezența celor patru artiști multimedia implicați în proiect – Aura Bălănescu, Ciprian Ciuclea, Floriama Cândea și Peter Gate – și a oamenilor de știință din cele patru institute de cercetare partenere: Institutul de Științe Spațiale, Institutul de Cercetare Dezvoltare pentru Textile și Pielărie, Institutului Național de Cercetare-Dezvoltare pentru Fizica Materialelor-Măgurele și Institutului Național de Cercetare-Dezvoltare pentru Fizica Laserilor Plasmei și Radiațiilor.

Curatoarea expoziției și cea care a propus tema ediției din acest an a Fusion AIR – Structuri Convertibile – este Olivia Nițis:

Structuri Convertibile este un proiect care analizează relațiile dintre artă și practicile științifice, precum și contextul de creare a conținutului într-un anumit cadru și istoria locală. Conceptul expoziției se bazează pe flexibilitatea oferită de noțiunea de conversie și pe procesele individuale de lucru ale fiecărui artist în colaborare cu oamenii de știință implicați. Patru artiști instrumentalizează materialele și tehnologiile științifice cu un scop convertibil, transformator. Expoziția arhivează, de asemenea, procesele de creație și mapează traiectoriile de lucru, precum și instrumentele teoretice pentru o mai bună înțelegere a relației complexe și a narațiunilor artei și științei”, a mărturisit aceasta.

Rezidențele au însemnat o serie de întâlniri și discuții între creatori și cercetătorii din cele patru institute, fiind un program ce le permite oamenilor de știință și artiștilor să lucreze, să comunice și să cerceteze împreună, să beneficieze atât de știință, cât și de artă, stimulând gândirea creativă și inovația.

Cele patru lucrări rezultate la finalul săptămânilor de rezidență în institutele de cercetare, în urma a zeci de întâlniri și dialoguri între artiști și cercetători, pe care publicul le va putea vedea la /SAC @ MALMAISON timp de trei săptămâni sunt:

  • Arheologia invizibilului – ecouri din Universul îndepărtat. Ciprian Ciuclea prezintă o instalație multimedia care face referire la dimensiunea concretă și conceptuală a zonei imperceptibile cu ochiul liber din jurul nostru în care pătrund particule de materie din universul îndepărtat. Instalația realizată de cunoscutul artist vizual în urma rezidenței sale artistice de la Institutul de Științe Spațiale, unde a lucrat alături de dr. Gina Isar, vorbește în cheie poetică despre modalități posibile de reprezentare a interacțiunii particulelor de energie înaltă cu atmosfera terestră. Instalația cuprinde diferite situații performative, o înregistrare video a unui mini-experiment și un calup de date științifice reasamblate într-o logică minimalistă, cu puternice accente narative.
  • Manuspectrum – lucrare interactivă, un pergament sensibil la atingere. Aura Bălănescu propune o experiență multisenzorială care are la bază conceptul de pergament ca suport-multistrat al informației (informație genetică, informație istorică, informație tehnologică, informație artistică și culturală), definită în urma cercetării realizate în cadrul rezidenței alături de dr. Elena Badea, drd. Iulia Caniola, msc. Simona Păunescu, msc. Emanuel Hadîmbu, de la Institutul Național de Cercetare Dezvoltare pentru Textile și Pielărie. Un proiect complex care se adresează întregului sistem perceptiv, ce pornește de la tactilitate și se extinde către auditiv și vizual, chiar kinestezic – a percepe realitatea cu întreaga corporalitate.
  • IMplant – instalatie ce explorează modul în care diferite structuri influențează materialitatea  diferitelor corpuri. Lucrarea prezintă rezultatele unui experiment interspecii, propus de  bioartista Floriama Cândea, într-un proiect de cercetare artistică dezvoltat alături de dr. Adrian Enache, drd. Luminița Rădulescu, dr. Mihaela Beregoi, dr. Mihaela Bunea și dr. Ionuț Enculescu, cercetători științifici în cadrul Institutului Național de Cercetare-Dezvoltare pentru Fizica Materialelor. IMPlant propune  o colecție  de obiecte iterate (naturale și artificiale), ce tranzitează  limitele dintre specii, dintre natural și artificial sau dintre realitate și ficțiune în încercarea de a găsi narațiuni noi despre relația om-natură.
  • [The Cell] sau  cum se comportă celulele vii supuse la sunete cu frecvențe specifice. Peter Gate, antropolog și muzician experimentalist, alături de drd. Cristina Elena Staicu, dr. Florin Jipa și dr. Marian Zamfirescu, cercetători la Institutul Național pentru Fizica Laserilor, Plasmei și Radiației, au conceput și realizat un experiment în cadrul căruia celule vii au fost imersate într-un mediu acustic cu sunete de frecvențe prestabilite și s-a constatat că celulele reacționează pozitiv la acești stimuli sonori. În cadrul expoziției, va fi expus rezultatul unui experiment cymatics de generare sonică a frecvențelor specific create pe un suport clasic de pânză cu substanță acrilică. Proiectul în sine de „infuzare sonică” a unor celule vii cu suntele create de artist reprezintă un nivel superior de provocare știintifico-artistică.

/SAC @ MALMAISON este un spațiu-context de coproducții, cercetări și practici colaborative și transdisciplinare în artele vizuale, performative și scenice.  /SAC @ MALMAISON este al doilea spațiu din București al /SAC după cel deschis în 2018, pe str. Berthelot, nr. 5.

/SAC @ MALMAISON se află într-o comunitate-context – Atelierele Malmaison (o comunitate artistică ce include ateliere, spații de proiecte și galerii) – recent fondată în clădirea Malmaison cu o istorie de aproape 2 secole, situată central, pe Calea Plevnei, 137C.

Spațiul de Artă Contemporană – /SAC – este o inițiativă independentă privată, un context-resursă dedicat necesităților actuale ale producătorului și ale publicului pentru a stabili un dialog direct și formator prin intermediul expoziției, cercetării și promovării.

/SAC @ MALMAISON a fost amenajat cu sprijinul URSA România și Policolor.

ORGANIZATOR: Qolony – Colonia pentru artă și știință este o asociație fondată în 2019 care desfășoară programe de cercetare și producție și promovează arta aflată la intersecția cu știința: rezidențe artistice, prezentări, dezbateri, workshop-uri, expoziții, care deschid dialoguri între artiști și oameni de știință din institutele de cercetare, la nivel național și internațional. Echipa Qolony este formată din Mihaela Ghiță, inițiatoarea proiectului FUSION AIR, artistele vizuale Floriama Cândea și Sabina Suru, alături de Andrei Tudose, manager cultural. Site oficial: www.qolony.eu.

INSTITUTE DE CERCETARE PARTENERE: 

  • Institutul de Științe Spațiale (ISS) / www2.spacescience.ro
  • Institutul Național de Cercetare Dezvoltare pentru Textile și Pielărie București (INCDTP) / www.incdtp.ro
  • Institutul Național pentru Fizica Materialelor (IFIM) / www.infim.ro
  • Institutul Național pentru Fizica Laserilor, Plasmei și Radiației (INFLPR) / www.inflpr.ro

PARTENER EXPOZIȚIONAL: /SAC @ MALMAISON– Spațiul de Artă Contemporană,

PARTENERI INSTITUȚIONALI: Institutul Francez din România, CESI – Centrul de Excelență în Studiul Imaginii, Muzeul Național de Artă Contemporană, Asociația Scientifica

PARTENERI MEDIA:

Modernism, Radio România Cultural, Agerpres, Scena 9, IQads, The Institute, Urban.ro, Observator cultural, Știință și comunicare, Mindcraft Stories, SavantGarde, Zeppelin, Graphic front, LiterNet, LaPunkt, Bookhub, Feeder, Market Watch, Revista Știința și Tehnică

Fusion:AIR este un proiect cultural co-finanţat de Administraţia Fondului Cultural Naţional (AFCN).

Proiectul nu reprezintă în mod necesar poziţia Administrației Fondului Cultural Național. AFCN nu este responsabilă de conținutul proiectului sau de modul în care rezultatele proiectului pot fi folosite. Acestea sunt în întregime responsabilitatea beneficiarului finanțării.

Persoane de contact:

/Qolony – Mihaela Ghiță / 0757 294275 / office[at]qolony[dot]eu

/SAC@MALMAISON – Alex Radu / 0722 285013 / alex[at]spatiuldeartacontemporana[dot]ro

/ISS – Gina Isar / isar[at]spacescience[dot]ro

 

 

Prima gaură neagră descoperită este mai masivă decât se credea

Reprezentare artistică a sistemului binar Cygnus X-1. Foto Credit: International Centre for Radio Astronomy Research, Australia

Noi observații ale primei găuri negre descoperite i-a făcut pe astronomi să se întrebe ce știu de fapt despre aceste extrem de misterioase obiecte din Univers.

Lucrarea publicată în revista Science arată că sistemul binar Cygnus X-1 conține cea mai masivă gaură neagră stelară detectată vreodată prin alte metode decât undele gravitaționale.

Gaura neagră din Cygnus X-1 este printre cele mai apropiate de Pământ. A fost descoperită în 1964 de o pereche de detectoare Geiger aflate la bordul unei rachete sub-orbitale lansate din New Mexico.

Obiectul a fost în 1974 subiectul unui faimos pariu științific între fizicienii Stephen Hawking și Kip Thorne. Hawking a pariat că nu este o gaură neagră și și-a recunoscut ulterior înfrângerea în 1990.

În articol, o echipă internațională de astronomi a folosit rețeaua de radiotelescoape VLBA-Very Long Baseline Array (10 antene parabolice răspândite pe întreaga suprafață a Statelor Unit ale Americii) și o tehnică inteligentă pentru a măsura distanțele în spațiu.

“Dacă vedem un obiect din diferite poziții putem să calculăm distanța până la el măsurând cât de mult pare că s-a deplasat față de fundal”, spune autorul principal, prof. James Miller-Jones de la Universitatea Curtin si Centrul Internațional pentru Cercetare în Radioastronomie (ICRAR) din Australia.

“Dacă ținem un deget în fața ochilor și ne uităm la el cu un singur ochi, alternativ, degetul pare că se deplasează. Este exact același principiu.”

Timp de șase zile în 2016 cercetătorii au observat o orbită întreagă a găurii negre și au folosit de asemenea observații mai vechi, făcute în 2009-2010. “Această metodă și noile date arată că sistemul binar Cygnus X-1 este mai departe decât se credea, iar gaura neagră este mai masivă.”, declară prof. James Miller-Jones.

Prof. Ilya Mandel de la Universitatea Monash si Centrul ARC pentru Excelență în Descoperirea Undelor Gravitaționale (OzGrav) din Australia conchide că această gaura neagră este atât de masivă încât pune la încercare teoriile astronomilor despre cum s-au format astfel de obiecte.

“Stelele pierd masă în mediul înconjurător prin asa-numitul vânt stelar care bate dinspre suprafața lor. Dar ca să se poată forma o gaură neagră cu o masă atât de mare este nevoie ca stelele să piardă o cantitate de materie relativ redusă de-a lungul vieții lor”, spune el.

“Gaura neagră din sistemul binar Cygnus X-1 a fost întâi o stea cu masa de aproximativ 60 de ori mai mare decât cea a Soarelui, apoi a colapsat cu zeci de mii de ani în urmă”, continua el. “Acum gaura neagră și steaua companion, o super-gigantă, au o orbită cu o perioadă de doar cinci zile și jumătate și o distanță între ele de aproape o cincime din distanța dintre Pamânt și Soare. Conform noilor observații gaura neagră este de peste 20 de ori mai masivă decât Soarele, cu aproape 50% mai mult decât se credea până acum.”

Xueshan Zhao, studentă doctorală la Observatorul Astronomic Național al Academiei Chineze de Științe din Beijing, spune despre rezultate: “Folosind noile informații despre masa găurii negre și distanța față de Pământ am putut confirma că acest obiect compact se rotește în jurul axei proprii incredibil de rapid, cu o viteză apropiată de cea a luminii, mai rapid decât oricare altă gaură neagră descoperită până acum.”

“Sunt la începutul carierei în cercetare și apartenența la o echipă internațională și contribuția la îmbunătățirea proprietăților cunoscute ale primei găuri negre descoperite au constituit o mare oportunitate pentru mine”, continuă ea.

Anul următor va începe în Australia și Africa de Sud construcția celui mai mare radiotelescop din lume, Square Kilometre Array (SKA).

“Studiul găurilor negre este o tentativă de a afla unele dintre cele mai bine păstrate secrete ale Universului; este pe cât de dificil, pe atât de incitant”, concluzionează prof. Miller-Jones.

„Pe măsură ce noua generație de radiotelescoape devine utilizabilă, sensibilitatea crescută a acestora va arăta Universul în detalii mai fine răsplătind astfel zeci de ani de eforturi depuse de cercetători și ingineri din toată lumea în încercarea lor de a înțelege mai bine cosmosul și obiectele exotice ori extreme care îl populează.

Este o perioadă foarte bună pentru astronomi.”

Pe lângă articolul din Science, două alte studii axate pe anumite detalii au fost publicate în revista The Astrophysical Journal.

Publicația originală
“Cygnus X-1 contains a 21-solar mass black hole – implications for massive star winds”, Science, 18 Februarie 2021
https://science.sciencemag.org/content/early/2021/02/17/science.abb3363

Articole companion
“Re-estimating the spin parameter of the black hole in Cygnus X-1”, 2021, The Astrophysical Journal, 908, 117
“Wind mass-loss rates of stripped stars inferred from Cygnus X-1”, 2021, The Astrophysical Journal, 908, 118

Persoană de contact (ISS): Dr. Fiz. Valeriu Tudose <tudose@spacescience[dot]ro>

Galerie foto:

Animație


Sistemul Cygnus X-1 format dintr-o gaură neagră stelară și o stea companion gigantă. Observații recente făcute cu radiotelescoape au arătat că sistemul este cu 20% mai departe decât se credea. Gaura neagră din sistem are prin urmare o masă de 21 de ori mai mare decât Soarele, fiind astfel cea mai masivă gaură neagră stelară detectată până acum prin alte mijloace decât undele gravitaționale. Credit: International Centre for Radio Astronomy Research, Australia

First black hole ever detected is more massive than we thought

An artist’s impression of the Cygnus X-1 system. Credit: International Centre for Radio Astronomy Research.

New observations of the first black hole ever detected have led astronomers to question what they know about the Universe’s most mysterious objects.

Published today in the journal Science, the research shows the system known as Cygnus X-1 contains the most massive stellar-mass black hole ever detected without the use of gravitational waves.

Cygnus X-1 is one of the closest black holes to Earth. It was discovered in 1964 when a pair of Geiger counters were carried on board a sub-orbital rocket launched from New Mexico.

The object was the focus of a famous scientific wager between physicists Stephen Hawking and Kip Thorne, with Hawking betting in 1974 that it was not a black hole. Hawking conceded the bet in 1990.

In this latest work, an international team of astronomers used the Very Long Baseline Array—a continent-sized radio telescope made up of 10 dishes spread across the United States—together with a clever technique to measure distances in space.

“If we can view the same object from different locations, we can calculate its distance away from us by measuring how far the object appears to move relative to the background,” said lead researcher, Professor James Miller-Jones from Curtin University and the International Centre for Radio Astronomy Research (ICRAR).

“If you hold your finger out in front of your eyes and view it with one eye at a time, you’ll notice your finger appears to jump from one spot to another. It’s exactly the same principle.”

“Over six days we observed a full orbit of the black hole and used observations taken of the same system with the same telescope array in 2011,” Professor Miller-Jones said. “This method and our new measurements show the system is further away than previously thought, with a black hole that’s significantly more massive.”

Co-author Professor Ilya Mandel from Monash University and the ARC Centre of Excellence in Gravitational Wave Discovery (OzGrav) said the black hole is so massive it’s actually challenging how astronomers thought they formed.

“Stars lose mass to their surrounding environment through stellar winds that blow away from their surface. But to make a black hole this heavy, we need to dial down the amount of mass that bright stars lose during their lifetimes” he said.

“The black hole in the Cygnus X-1 system began life as a star approximately 60 times the mass of the Sun and collapsed tens of thousands of years ago,” he said. “Incredibly, it’s orbiting its companion star—a supergiant—every five and a half days at just one-fifth of the distance between the Earth and the Sun.

“These new observations tell us the black hole is more than 20 times the mass of our Sun—a 50 per cent increase on previous estimates.”

Xueshan Zhao is a co-author on the paper and a PhD candidate studying at the National Astronomical Observatories—part of the Chinese Academy of Sciences (NAOC) in Beijing.

“Using the updated measurements for the black hole’s mass and its distance away from Earth, I was able to confirm that Cygnus X-1 is spinning incredibly quickly—very close to the speed of light and faster than any other black hole found to date,” she said.

“I’m at the beginning of my research career, so being a part of an international team and helping to refine the properties of the first black hole ever discovered has been a great opportunity.”

Next year, the world’s biggest radio telescope—the Square Kilometre Array (SKA)—will begin construction in Australia and South Africa.

“Studying black holes is like shining a light on the Universe’s best kept secret—it’s a challenging but exciting area of research,” Professor Miller-Jones said.

“As the next generation of telescopes comes online, their improved sensitivity reveals the Universe in increasingly more detail, leveraging decades of effort invested by scientists and research teams around the world to better understand the cosmos and the exotic and extreme objects that exist.

It’s a great time to be an astronomer.”

Accompanying the publication in Science, two further papers focusing on different aspects of this work have also been published today in The Astrophysical Journal.

Original Publication:

‘Cygnus X-1 contains a 21-solar mass black hole – implications for massive star winds’, published in Science on February 18th, 2021.

Companion Papers:

‘Reestimating the Spin Parameter of the Black Hole in Cygnus X-1’, published in The Astrophysical Journal on February 18th, 2021.

‘Wind mass-loss rates of stripped stars inferred from Cygnus X-1’, published in The Astrophysical Journal on February 18th, 2021.

Contact Person (ISS): Dr. Valeriu Tudose <tudose[at]spacescience[dot]ro>

Photo Gallery:

An animation showing the Cygnus X-1 system, containing a black hole 21 times the mass of the Sun orbiting a star that’s 41 times the mass of the Sun. Recent observations by radio telescopes have found the system is 20 per cent further away than previously thought, making it the most massive stellar-mass black hole ever detected without the use of gravitational waves. Credit: International Centre for Radio Astronomy Research.

Publicarea Datelor Deschise ale Observatorului Pierre Auger privind razele cosmice de cea mai înaltă energie

Foto Credit: Pierre Auger Observatory

Observatorul Pierre Auger publică 10% din datele înregistrate utilizând cel mai mare detector de radiații cosmice din lume. Aceste date sunt făcute publice în vederea utilizării lor de o comunitate cât mai largă și diversă, cuprinzând cercetători profesioniști și amatori, pentru inițiative de cercetare, educaționale și de outreach.

Colaborarea Pierre Auger a pus la dispozitia publicului larg datele colectate într-o manieră asemănătoare de mai bine de un deceniu, însa modul actual de publicare este mult mai performant în ceea ce privește calitatea și tipul de date, făcându-le utilizabile atât în scopuri educaționale cât și în cercetarea științifică. Datele pot fi accesate la adresa: www.auger.org/opendata [1]

Operarea Observatorului Pierre Auger de către o Colaborare de aproximativ 400 de oameni de știință din peste 90 de instituții din 18 țări din întreaga lume a condus la determinarea proprietăților razelor cosmice cu energiile cele mai înalte și cu o precizie fără precedent. Aceste particule cosmice sunt predominant nuclee ale elementelor obișnuite care ajung pe Pământ de la surse astrofizice. Datele de la Observator au fost utilizate pentru a demonstra că particulele de cea mai înalta energie au origine extragalactică. Spectrul de energie al razelor cosmice măsurate depășește 1020 eV ceea ce corespunde unei valori macroscopice de aproximativ 16 Jouli pentru o singura particulă. S-a demonstrat că există o scădere accentuată a fluxului de particule la energii înalte și există dovezi preliminare ale emisiei de la surse specifice din apropiere. Analizele datelor au permis caracterizarea tipului de particule cu asemenea energii remarcabile, care includ elemente de la hidrogen la siliciu. Datele pot fi deasemenea utilizate pentru a testa fizica particulelor la energii peste cele obținute la LHC.

La Observatorul hibrid Pierre Auger [2], localizat în Argentina, radiația cosmică este observată indirect, prin intermediul jerbelor de particule secundare produse la interacția particulei primare incidente cu atmosfera. Detectorul de Suprafață a Observatorului acoperă o arie de 3000 km2 și este alcătuit dintr-o rețea de detectori individuali de particule amplasați la o distanță de 1500 m unul de celălalt. Intregul Observator este încadrat de telescoapele care compun Detectorul de Fluorescență, sensibile la lumina de fluorescență, asemănătoare aurorelor, emisă pe masură ce jebele atmosferice se dezvoltă. Detectorul de Suprafață este sensibil la muonii, electronii și fotonii care ajung la nivelul solului. Datele de la Observator cuprind date brute (obținute direct de la aceste instrumente), seturi de date reconstruite generate prin analize detaliate și date prezentate în publicații științifice. Unele date sunt partajate în mod obișnuit cu alte observatoare pentru a permite efectuarea de analize utilizând multiple experimente care astfel acoperă tot cerul și pentru a facilita studii multi-mesager. 

După cum a subliniat purtătorul de cuvânt al colaborării, Ralph Engel, “datele de la Observatorul Pierre Auger, care a fost înființat acum mai bine de 20 de ani, sunt rezultatul unei investiții științifice, umane și financiare mari și de lungă durată de către o colaborare internațională foarte extinsă” ele fiind de o valoare remarcabilă la nivelul comunității științifice din întreaga lume”. Prin publicarea datelor și a programelor de analiză Colaborarea Auger îmbrățișează principiul conform căruia accesul deschis la date va permite, pe termen lung, valorificarea maximă a potențialului lor știintific.

Colaborarea Auger a adoptat o clasificare pe 4 nivele de compexitate a datelor, în raport cu cele utilizate în fizica energiilor înalte, și a adaptat-o la politica sa de acces public deschis.

(Nivelul 1) Publicații cu acces deschis cu date numerice suplimentare oferite pentru a facilita re-utilizarea lor [3];

(Nivelul 2) Publicarea periodică de date într-un format simplificat, pentru educație și outreach. Aceasta a inceput în 2007 când au fost publicate 1% din date, procent care a crescut la 10% în 2019 [4];

(Nivelul 3) Publicarea de date care reconstruiesc evenimentele produse de raze cosmice, obținute cu cele mai bune cunoștințe disponibile despre performanța detectorului și a condițiilor de la momentul înregistrării datelor. Exemple de coduri derivate din cele utilizate de Colaborare pentru publicarea analizelor sunt de asemenea oferite [5];

(Nivelul 4) Publicarea de date apropriate de cele brute asociate cu evenimentele înregistrate. Un browser de afișare a evenimentelor si coduri de citire a datelor sunt de asemenea disponibile [6].

Ultimele nivele de informații adăugate în prezent [1] includ date de la două instrumente majore ale Observatorului: Detectorul de Suprafață dispus pe 1500 m2 și Detectorul de Fluorescență. Setul de date constă în 10% din toate evenimentele înregistrate la Observator, supuse acelorași proceduri de selecție și reconstrucție utilizate de Colaborare în publicații recente. Perioadele de înregistrare a datelor sunt aceleași cu cele utilizate pentru obținerea rezultatelor științifice prezentate la Conferința Internațională de Radiație Cosmică care a avut loc în 2019. Exemplele de analize folosesc versiuni actualizate de seturi de date Auger, care diferă ușor de cele utilizate pentru publicații din cauza unor îmbunătățiri ulterioare a reconstrucției și calibrării. Pe de altă parte, cum procentul de date disponibil public momentan este de 10% din baza de date Auger, semnificația statistică a cantităților măsurate este redusă, relativ la ceea ce poate fi obținut cu o bază de date completă, dar numarul de evenimente este comparabil cu cel utilizat în câteva din primele publicații științifice ale Colaborării Pierre Auger.

Colaborarea Pierre Auger dorește să continue politica sa de a face publice datele experimentale în scopul accesului publicului larg și divers la acestea, pentru creșterea potențialului științific comun în viitor.

Link-uri:

[1] https://www.auger.org/opendata/

[2] https://www.auger.org

[3] https://www.auger.org/index.php/science

[4] https://labdpr.cab.cnea.gov.ar/ED/

[5] https://www.auger.org/opendata/analysis.php

[6] https://www.auger.org/opendata/display.php?evid=81847956000

Fotografii ale Observatorului Pierre Auger (CC BY-SA 2.0):

https://www.flickr.com/photos/134252569@N07/21948576246/in/album-72157656013297308/

PA_174

PA_071

https://www.flickr.com/photos/134252569@N07/1946

Release of Open Data on the Highest-Energy Cosmic Rays by the Pierre Auger Observatory

Foto Credit: Pierre Auger Observatory

The Pierre Auger Collaboration is releasing 10% of the data recorded using the world’s largest cosmic ray detector. These data are being made available publicly with the expectation that they will be used by a wide and diverse community including professional and citizen-scientists and for educational and outreach initiatives. While the Auger Collaboration has released data in a similar manner for over a decade, the present release is much wider with regard to both the quantity and type of data, making them suitable both for educational purposes and for scientific research. The data can be accessed at www.auger.org/opendata [1]

Operation of the Pierre Auger Observatory, by a Collaboration of about 400 scientists from over 90 institutions in 18 countries across the world, has enabled the properties of the highest-energy cosmic rays to be determined with unprecedented precision. These cosmic rays are predominantly the nuclei of the common elements and reach the Earth from astrophysical sources. The data from the Observatory have been used to show that the highest-energy particles have an extra-galactic origin. The energy spectrum of cosmic rays has been measured beyond 1020 eV, corresponding to a macroscopic value of about 16 joules in a single particle. It has been demonstrated that there is a sharp fall of the flux at high energy, and emerging evidence of emission from particular near-by sources has been uncovered. Analyses of the data have allowed characterisation of the type of particles that carry these remarkable energies, which include elements ranging from hydrogen to silicon. The data can also be used to test particle physics at energies beyond the reach of the LHC.

At the Pierre Auger Observatory [2], located in Argentina, cosmic rays are observed indirectly, through extensive air-showers of secondary particles produced by the interaction of the incoming cosmic ray with the atmosphere. The Surface Detector of the Observatory covers 3000 km² and comprises an array of particle detectors separated by 1500 m. The area is overlooked by a set of telescopes that compose the Fluorescence Detector which is sensitive to the auroral-like light emitted as the air-shower develops, while the Surface Detector is sensitive to muons, electrons and photons that reach the ground. The data from the Observatory comprises the raw ones, obtained directly from these and other instruments, through reconstructed data sets generated by detailed analysis, up to those presented in scientific publications. Some of the data are routinely shared with other observatories to allow analyses with full-sky coverage and to facilitate multi-messenger studies.

As pointed out by the spokesperson, Ralph Engel, “the data from the Pierre Auger Observatory, which was founded more than 20 years ago, are the result of a vast and long-term scientific, human, and financial investment by a large international collaboration. They are of outstanding value to the worldwide scientific community.” By releasing data and analysis programs to the public, the Auger Collaboration upholds the principle that open access to the data will, in the long term, allow the maximum realization of their scientific potential.

The Auger Collaboration has adopted a classification of four levels of complexity of their data, following that used in high-energy physics, and adapted it for its open-access policy:

(Level 1) Open-access publication with additional numerical data provided to facilitate re-use [3];

(Level 2) Regular release of cosmic-ray data in a simplified format, for education and outreach. This began in 2007 when 1% of the data was released and increased to 10% in 2019 [4];

(Level 3) Release of reconstructed cosmic-ray events, selected with the best available knowledge of the detector performance and conditions at the time of data-taking. Example codes derived from those used by the Collaboration for published analyses are also provided [5];

(Level 4) Release of close-to-raw data associated with those events. An event-display, and codes to read these data, are also provided [6].

The last two levels of information are added in the present release [1], which includes data from the two major instruments of the Observatory, the 1500 m array of the Surface Detector and the Fluorescence Detector. The dataset consists of 10% of all the events recorded at the Observatory, subjected to the same selection and reconstruction procedures used by the Collaboration in recent publications. The periods of data recording are the same as used for the physics results presented at the International Cosmic Ray Conference held in 2019. The examples of analyses use updated versions of the Auger data sets, which differ slightly from those used for the publications because of subsequent improvements to the reconstruction and calibration. On the other hand, as the fraction of data which is now available is currently 10% of the actual Auger data sample, the statistical significances of measured quantities are reduced with respect to what can be achieved with the full dataset, but the number of events is comparable to what was used in some of the first scientific publications by the Auger Collaboration.

The Pierre Auger Collaboration is committed to its open data policy, in order to increase the diversity of people accessing scientific data and so the common scientific potential for the future.

Links:

[1] https://www.auger.org/opendata/

[2] https://www.auger.org

[3] https://www.auger.org/index.php/science

[4] https://labdpr.cab.cnea.gov.ar/ED/

[5] https://www.auger.org/opendata/analysis.php

[6] https://www.auger.org/opendata/display.php?evid=81847956000

Photos of the Pierre Auger Observatory (CC BY-SA 2.0):

https://www.flickr.com/photos/134252569@N07/21948576246/in/album-72157656013297308/

PA_174

PA_071

PA_174

 

In memoriam Dr. Dumitru Hașegan

Dumitru Hașegan (1943-2021)
Dumitru Hașegan (1943-2021)

O mare inimă a încetat să mai bată. Cu tristete anunțăm că Joi, 14 Ianuarie 2021, Dr. Ing. Dumitru Hașegan a trecut la cele veșnice. Dumitru (Ticu) Hașegan a fost director al Institutului de Știinte Spațiale (ISS) de la București-Măgurele, în perioada 1990-2011.

Dr. Hașegan a fost membru deplin al Academiei Internaționale de Astronautică și reprezentant al României în Comitetul pentru Programe Științifice (SPC) al Agenției Spațiale Europeane (ESA). In particular, a semnat din partea României acordul multilateral cu ESA pentru Misiunea Euclid și a fost membru în Comitetului de Conducere al acesteia.

Pe toată durata carierei sale, Dr. Hașegan a susținut dezvoltarea domeniului de știinte spațiale în România, fără a neglija fizica nucleară, fizica energiilor înalte și fizica medicală.

Dr. Hașegan a fost liderul primului experiment românesc la bordul Stației Spațiale Internaționale.

În calitatea sa de director al ISS, Dr. Hașegan a reușit să construiască un institut de cercetare de top în România, chiar și atunci când circumstanțele nu erau în totalitate favorabile. Dânsul obișnuia să spună colegilor: “Voi continuați-vă cercetările, de restul mă voi ocupa eu”.

Amfiteatrul ISS, construit în perioada manadatului dumnealui, îi va purta numele.

Cred că satisfacția maximă provine din alegerea drumului în viață care a produs atât satisfacțiile profesionale, cât și cele umane. În domeniul cercetării spațiului cosmic am realizat experimente la bordul a 9 sateliți și 3 stații spațiale. Participarea la programul științific al primului cosmonaut român, Dumitru Dorin Prunariu, cu experimente proprii sau în colaborare, a însemnat un moment de satisfacție majoră. Iar ieșirea în spațiul cosmic în 2011 cu primul experiment românesc la bordul Stației Spațiale Internaționale a însemnat o încununare a activității de cercetare. O satisfacție majoră a provenit și din participarea la echipa care, în anul 1984, a descoperit experimental un nou tip de radioactivitate: emisia spontană a nucleelor de Neon-24 din izotopii Thoriu-230, Protactiniu-231 și Uraniu-233. Și o mare satisfacție a însemnat înființarea, în 1990, a Institutului de Științe Spațiale din București care a devenit un institut important în peisajul cercetării științifice din țară și din Europa prin realizările sale și colaborările internaționale la care participă.”, a relatat Dr. Ing. Dumitru Hașegan într-un interviu acordat pentru Q Magazine în 2017.

Cu profundă durere, conducerea și colectivul ISS transmite pe această cale sincere condoleanțe familiei îndurerate și comunității științifice, pentru imensa pierdere.

Dumnezeu sa-i dea odihna cea veșnică!