Misiunea ESA Euclid sărbătorește primele date științifice cu imagini cosmice efervescente

Misiunea ESA Euclid sărbătorește primele date științifice cu imagini cosmice efervescente

Misiunea spațială ESA Euclid a făcut publice cinci noi imagini inedite ale Universului. Imaginile nemaivăzute până acum demonstrează capacitatea telescopului Euclid de a dezvălui secretele cosmosului și de a permite cercetătorilor să caute planete (rătăcite), să folosească lentile gravitaționale în studiul materiei misterioase și să exploreze evoluția Universului.

Noile imagini fac parte din Observațiile de lansare timpurie ale lui Euclid. Ele însoțesc primele date științifice ale misiunii, făcute publice tot astăzi, precum și 10 articole științifice care vor fi publicate în curând. Aceste rezultate apar la mai puțin de un an de la lansarea telescopului spatial și la aproxiativ 6 luni după ce acesta a trimis primele imagini color complete ale cosmosului.

Setul complet de observații timpurii a vizat 17 obiecte astronomice, de la norii apropiați de gaz și praf la clustere îndepărtate de galaxii, înainte de Campania principală de observații a Euclid. Aceste observații au ca scop dezvăluirea secretelor cosmosului întunecat  și încearcă să explice de ce Universul arată așa cum îl vedem noi astăzi.

Institutul de Științe Spațiale –Filiala INFLPR este un membru activ al Consorțiului Euclid.

Noile imagini Euclid ale grupului de galaxii Dorado

Dorado este unul dintre cele mai bogate grupuri de galaxii din emisfera sudică. Euclid surprinde semen ale evoluției și fuziunii galaxiilor ”în acțiune”, cu frumoase cozi de maree și scoici izibile ca rezultat al interacțiunilor în desfășurare.. Deoarece Dorado este mult mai tânăr decât alte clustere (precum Fornax)câteva dintre galaxiile sala componente încă formează stele și se află în stadiul de interacțiune unele cu altele, în timp ce altele arată semen de fuziune relative recentă. . Ca dimensiune, Dorado se situează între clusterele mari de galaii și grupurile mai mici de galaxii, făcându-l un obiect de studiu util și fascinant de studiat cu Euclid.

Acest set de  date permite oamenilor de știință să studieze cum evoluează și se ciocnesc galaxiile de-a lungul timpului, pentru a îmbunătăți modelele de istorie cosmică și a înțelege formarea galaxiilor în halouri de materie întunecată, această nouă imagine fiind o adevărată mărturie a versatilității immense a lui Euclid.. Un spectru larg de galaxii este vizibil, de la foarte luminoase la cele mai slabe. Datorită combinației unice a lui Euclid de camp visual mare și rezoluție spațială înaltă, pentru prima data putem folosi același instrument și aceleași observații pentru a studia în profunzime trăsături mici (obiecte mici de dimensiunea clusterelor stelare), largi (părțile centrale ale unei galaxii) și extinse (cozi de fuziune mareică) pe o mare parte a cerului.

Oamenii de știință folosesc, de asemenea, observațiile Euclid ale Grupului Dorado pentru a răspunde la întrebări care anterior puteau fi explorate doar folosind fragmente extrem de mici de date. Aceasta include compilarea unei liste complete a clusterelor individuale de stele (clustere globulare) din jurul galaxiilor văzute aici. Odată ce știm unde se află aceste clustere, le putem folosi pentru a trasa modul în care s-au format galaxiile și pentru a studia istoria și conținutul lor. Oamenii de știință vor folosi aceste date și pentru a căuta noi galaxii pitice în jurul Grupului Dorado, așa cum au făcut anterior cu clusterul Perseus.

Grupul Dorado se află la 62 milioane ani-lumină distanță în spatele constelației Dorado.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

Noua imagine furnizată de Euclid a regiunii de producere stelară Messier 78

Această imagine uluitoare surprinde Messier 78 (zona centrală și cea mai luminoasă), o “creșă” de formare a stelelor încojurată de praf interstelar. Această imagine este fără precedent, este prima capture a acestei zone tinere de formare a stelelor cu asemenea lățime și adâncime.

Euclid a privit adânc în această “creșă” învăluită în praf folosind camera sa în infraroșu, expunând pentru prima oară regiunile ascunse de formare a stelelor, evidențiind complexitatea filamentelor de gaz și praf cu detalii fără precedent și descoperind stele și planete nou formate.

Instrumentele sensibile ale Euclid pot detecta obiecte cu mase de doar câteva ori mai mari ca Jupiter, camerele VIS (în vizual) și NISP (în infraroșu) au identificat mai mult de 300 000 obiecte noi doar în acest câmp vizual. Obiectele sub-stelare precum stelele pitice sau planetele libere sunt un posibil candidat pentru materia întunecată, deși cunoștințele actuale sugerează că nu sunt suficiente pentru a rezolva misterul materiei obscure în Calea Lactee. Euclid va răspunde definitiv la această problemă, după ce va explora o fracțiune semnificativă a galaxiei noastre.

De asemenea, vizibil în partea de sus a cadrului este nebula luminoasă NGC 2071, și un al treilea filament de formare a stelelor spre partea de jos a imaginii (cu un aspect asemănător unui „semafor”). Această regiune inferioară este o nebuloasă întunecată care produce stele de masă mai mică, toate dispuse de-a lungul filamentelor alungite în spațiu.

Messier 78 se află la 1300 ani lumină în spatele constelației Orion.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

 

 

Noua imagine a galaxiei spirale NGC 6744 obținută de Euclid

NGC 6744 este una dintre cele mai mari galaxii spirale în afara zonei noastre locale. Este un exemplu tipic de galaxie în care se formează cele mai multe stele din Universul apropiat, fiind un subiect de studiu ideal pentru Euclid.

Câmpul vizual larg al lui Euclid acoperă întreaga galaxie, evidențiind nu numai structura spiralelor la scară mare, dar și detalii la scări spațiale mai mici și într-o combinație de lungimi de undă. Aceste detalii includ liniile de praf  în formă de pană ieșind din brațele spiralelor, evidențiate cu incredibilă claritate. Observațiile vor permite cercetătorilor nu doar să numere stelele din NGC 6744 dar și să înțeleagă distribuția largă a stelelor și prafului în galaxie și să topografieze praful asociat cu gazele care alimentează formarea de stele noi. Formarea stelelor este principala modalitate de creștere a galaxiilor, deci aceste cercetări sunt esențiale în înțelegerea evoluției galaxiilor și de ce Universul arată așa cum îl vedem astăzi.

Datele vor permite cercetătorilor să identifice clusteri de stele vechi (clusteri globulari) și să caute noi galaxii pitice în jurul lui NGC 6744. De fapt, Euclid a descoperit deja o nouă galaxie pitică – satelit, o surpriză ținând cont că această galaxie a fost intens studiată în trecut.

NGC 6744 se află la 30 milioane ani lumină, în Grupul Local.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

 

Noua imagine a clusterului Abell 2763 văzută de Euclid.

Această nouă imagine arată clusterul de galaxii Abel 2764 (dreapta sus), o zonă foarte densă din spațiu conținând sute de galaxii orbitând într-un halou de materie obscură.

Euclid surprinde o serie de obiecte în această zonă de cer, incluzând multe galaxii și clusteri de galaxii mai îndepărtați, galaxii în interacție și o frumoasă galaxie spirală vizibilă dintr-o parte, aratându-ne “subțirimea” discului său.

Această vedere complete a lui Abell 2764 și a împrejurimilor – obținută datorită câmpului visual impresionant de larg al lui Euclid – le permite cercetătorilor să determine precis raza clusterului și să studieze galaxiile îndepărtate cu aceeași imagine. Observațiile asupra ABEL 2764 (ca și Abell 2390,  un alt obiectiv ilustrat în imaginile lansate astăzi de telescopul spatial) permit cercetătorilor să studieze unele dintre cele mai îndepărtate galaxii care au existat într-o  perioada misterioasă cunoscută sub numele de “ev mediu” cosmic. Euclid ne permite să vedem aceste galaxii în trecut, când Universul avea doar 700 de milioane de ani, adică 5% din vârsta sa actuală. Vizionarea luminii lor este o specialitate a lui Euclid, permițându-ne să vedem cum s-au format primele galaxii.

Se vede de asemenea o stea luminoasă din galaxia noastră (jos stânga): Beta Phoenicis, o stea din atmosfera sudică, sufficient de strălucitoare pentru a fi văzută cu  cu ochiul liber. Văzuta prin telescop, steaua are aspectul ghimpat din cauza opticii telescopului. Euclid este proiectat sa reduca cat de mult posibil acest efect, permițându-ne să măsurăm cu precizie steaua și sa vedem galaxiile din jur, fără să fim orbiți de lumina stelei.

Abell 2764 se află la 3,5 miliarde de ani lumină, în direcția constelației Phoenix.

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard Licence.

Imaginile la rezoluție înaltă cât și câteva “zoom”-uri se găsesc la: https://www.esa.int/Science_Exploration/Space_Science/Euclid.

Contact: vpopa@spacescience.ro

 

 

 

 

 

 

 

 

 

 

 

 

Euclid follow-up: primele imagini

Euclid early commissioning test images, Credit ESA/Euclid
Euclid early commissioning test images, Credit: ESA/Euclid/Euclid Consortium/NASA, CC BY-SA 3.0 IGO

Institutul de Științe Spațiale împărtășește satisfacția primelor imagini trimise de către telescopul spațial Euclid, la puțin timp de la lansarea sa în data de 1 iulie 2023.

Telescopul Euclid este dotat cu doua instrumente: VIS, care produce imagini ale cerului în domeniul vizibil, format din 36 CCD-uri cu un total de 609 Mpixeli, și NISP, care explorează universul în infraroșu apropiat, constând în 16 chip-uri cu un total de 64 Mpixeli, având și funcționalitatea de spectrograf în domeniul de lungime de unda între 1 și 2 microni.

După mai bine de 11 ani de pregătiri, este o mare bucurie să vedem că instrumentele Euclid funcționează corect. Mai avem însă de așteptat încă două luni până când telescopul va fi complet focalizat iar instrumentele termalizate și calibrate, pentru a putea începe analiza datelor” – declară Dr. Lucia Popa, reprezentanta României în Euclid Consortium Board.

După încheierea fazelor pregătitoare, începând din noiembrie anul acesta, Euclid va trimite doar în câteva zile un volum de date comparabil cu întreaga producție a telescopului Hubble în cei 33 de ani de viață ai acestuia.

Trebuie menționat că cele două imagini test prezentate mai jos au fost obținute de cele două instrumente în timpul deplasării satelitului către punctual Lagrange 2, instrumentele nefiind complet focalizate și calibrate; ele nu au utilitate științifică, dar demonstrează funcționarea impecabilă a sistemelor îmbarcate la bordul Euclid.

Participarea României la misiunea Euclid este asigurată de Institutul de Științe Spațiale (ISS), cu sprijinul Agenției Spațiale Române (ROSA) si a Agenției Spațiale Europene (ESA).

Pentru mai multe informații, Comunicatul de presă al ESA este disponibil aici.

Persoana de contact: Dr. Vlad Popa <vpopa[at]spacescience[dot]ro>, pentru grupul Euclid Consortium Core Communication.

Galerie foto (Credit: ESA/Euclid/Euclid Consortium/NASA, CC BY-SA 3.0 IGO )

Follow-up lansare Euclid

Logo Euclid, credit ESA
Logo Euclid, credit ESA
Data: 1 Julie 2023
Locație: Cape Canaveral, Florida, USA
Rachetă: SpaceX Falcon 9
Destinație: punctul 2 Lagrange, la 1.5 millioane km fată de Pămân

In data de 1 Iulie a avut loc un moment importat pentru misiunea Euclid. SpaceX/Falcon9, printr-o lansare perfectă, a aşezat telescoplul Euclid pe o orbită tranzițională, iar în data de 2 Iulie Euclid a fost transferat pe orbita solară către punctul 2 Lagrange (L2). Comunicarea cu Euclid a fost stabilită cu succes, urmând o lună de teste, calibrări şi începerea procesului de comisionare.

Cea mai mare emoție a fost în cele 10 minute de după lansare, până când Falcon9 a aterizat în bune condiții pe o barjă în ocean. A fost momentul în care cu toții am înțeles că Euclid a devenit realitate.” – declară Dr. Lucia Popa, reprezentantul României în Consorțiul Euclid și participant la lansare în Cape Canaveral, Florida, USA.

Euclid este, după Planck, a doua misiune ESA (Agenția Spațială Europeană) de cosmologie având ca principal obiectiv determinarea naturii şi interacției componentelor de tip materie întunecată şi energie întunecată, respectiv testarea relativității generalizate la scale cosmologice. Telescopul Euclid este echipat cu două instrumente: un spectrometru în infraroşu (NISP) şi o baterie de CCD-uri cu rol tomographic (VIS).

Importanța rezultatelor aşteptate de la misiunea Euclid este subliniată şi de decizia ESA de a aproba lansarea Euclid cu Falcon9, precum şi de aprobarea recentă a unei noi misiuni rapide de tip Fast (Clasa-F), ARRAKIHS (Analysis of Resolved Remnants of Accreted galaxies as a Key Instrument for Halo Surveys) cu lansare în 2029, care va folosi aceleaşi instrumente ca şi Euclid, pentru imagistica de câmp profund (Deep Field Imaging) în regiuni selectate de Euclid.

Contribuția grupului ISS – Institutul de Ştiițne Spațiale la misiunea spațială Euclid se desfăşoară în baza unui Acord Multilateral (Multilateral Agreement – MLA) semnat la nivel inter-ministerial între ESA şi țările membre ale Consorțiului Euclid. În baza acestui acord, în perioada de pre-lansare, contribuția grupului ISS-Euclid a constat în dezvoltarea, testarea şi implementarea în pipeline-ul general Euclid a unor module de analiză spectro-fotometrică a datelor primare. De asemenea, în colaborare cu Dante International S.A. (eMag) a fost dezvoltat un centru de date ştiințifice bazat pe tehnologia Cloud OpenStack, dotat cu echipamente furnizate de ESA, şi dedicat analizei ştiințifice a măsurătorilor Euclid.

În perioada de proprietate, după lansarea primului set de date, activitățile grupului ISS-Euclid vor fi dedicate analizei ştiințifice a măsurătorilor Euclid cu obiective legate de caracterizarea undelor gravitaționale primordiale şi a proceselor de inflație, procese de producere şi interacție pentru materia intunecată, precum şi determinarea ecuației de stare pentru energia întunecată.

Mai multe informații despre misiunea Euclid sunt disponibile aici, iar despre lansare aici.

Persoană de contact: Dr. Lucia Popa <lpopa[at]spacescience[dot]ro>, reprezentantul României în Consorțiul Euclid

Galerie foto (credit: Dr. Vlad Popa)

 

 

Publicarea Datelor Deschise ale Observatorului Pierre Auger privind razele cosmice de cea mai înaltă energie

Foto Credit: Pierre Auger Observatory

Observatorul Pierre Auger publică 10% din datele înregistrate utilizând cel mai mare detector de radiații cosmice din lume. Aceste date sunt făcute publice în vederea utilizării lor de o comunitate cât mai largă și diversă, cuprinzând cercetători profesioniști și amatori, pentru inițiative de cercetare, educaționale și de outreach.

Colaborarea Pierre Auger a pus la dispozitia publicului larg datele colectate într-o manieră asemănătoare de mai bine de un deceniu, însa modul actual de publicare este mult mai performant în ceea ce privește calitatea și tipul de date, făcându-le utilizabile atât în scopuri educaționale cât și în cercetarea științifică. Datele pot fi accesate la adresa: www.auger.org/opendata [1]

Operarea Observatorului Pierre Auger de către o Colaborare de aproximativ 400 de oameni de știință din peste 90 de instituții din 18 țări din întreaga lume a condus la determinarea proprietăților razelor cosmice cu energiile cele mai înalte și cu o precizie fără precedent. Aceste particule cosmice sunt predominant nuclee ale elementelor obișnuite care ajung pe Pământ de la surse astrofizice. Datele de la Observator au fost utilizate pentru a demonstra că particulele de cea mai înalta energie au origine extragalactică. Spectrul de energie al razelor cosmice măsurate depășește 1020 eV ceea ce corespunde unei valori macroscopice de aproximativ 16 Jouli pentru o singura particulă. S-a demonstrat că există o scădere accentuată a fluxului de particule la energii înalte și există dovezi preliminare ale emisiei de la surse specifice din apropiere. Analizele datelor au permis caracterizarea tipului de particule cu asemenea energii remarcabile, care includ elemente de la hidrogen la siliciu. Datele pot fi deasemenea utilizate pentru a testa fizica particulelor la energii peste cele obținute la LHC.

La Observatorul hibrid Pierre Auger [2], localizat în Argentina, radiația cosmică este observată indirect, prin intermediul jerbelor de particule secundare produse la interacția particulei primare incidente cu atmosfera. Detectorul de Suprafață a Observatorului acoperă o arie de 3000 km2 și este alcătuit dintr-o rețea de detectori individuali de particule amplasați la o distanță de 1500 m unul de celălalt. Intregul Observator este încadrat de telescoapele care compun Detectorul de Fluorescență, sensibile la lumina de fluorescență, asemănătoare aurorelor, emisă pe masură ce jebele atmosferice se dezvoltă. Detectorul de Suprafață este sensibil la muonii, electronii și fotonii care ajung la nivelul solului. Datele de la Observator cuprind date brute (obținute direct de la aceste instrumente), seturi de date reconstruite generate prin analize detaliate și date prezentate în publicații științifice. Unele date sunt partajate în mod obișnuit cu alte observatoare pentru a permite efectuarea de analize utilizând multiple experimente care astfel acoperă tot cerul și pentru a facilita studii multi-mesager. 

După cum a subliniat purtătorul de cuvânt al colaborării, Ralph Engel, “datele de la Observatorul Pierre Auger, care a fost înființat acum mai bine de 20 de ani, sunt rezultatul unei investiții științifice, umane și financiare mari și de lungă durată de către o colaborare internațională foarte extinsă” ele fiind de o valoare remarcabilă la nivelul comunității științifice din întreaga lume”. Prin publicarea datelor și a programelor de analiză Colaborarea Auger îmbrățișează principiul conform căruia accesul deschis la date va permite, pe termen lung, valorificarea maximă a potențialului lor știintific.

Colaborarea Auger a adoptat o clasificare pe 4 nivele de compexitate a datelor, în raport cu cele utilizate în fizica energiilor înalte, și a adaptat-o la politica sa de acces public deschis.

(Nivelul 1) Publicații cu acces deschis cu date numerice suplimentare oferite pentru a facilita re-utilizarea lor [3];

(Nivelul 2) Publicarea periodică de date într-un format simplificat, pentru educație și outreach. Aceasta a inceput în 2007 când au fost publicate 1% din date, procent care a crescut la 10% în 2019 [4];

(Nivelul 3) Publicarea de date care reconstruiesc evenimentele produse de raze cosmice, obținute cu cele mai bune cunoștințe disponibile despre performanța detectorului și a condițiilor de la momentul înregistrării datelor. Exemple de coduri derivate din cele utilizate de Colaborare pentru publicarea analizelor sunt de asemenea oferite [5];

(Nivelul 4) Publicarea de date apropriate de cele brute asociate cu evenimentele înregistrate. Un browser de afișare a evenimentelor si coduri de citire a datelor sunt de asemenea disponibile [6].

Ultimele nivele de informații adăugate în prezent [1] includ date de la două instrumente majore ale Observatorului: Detectorul de Suprafață dispus pe 1500 m2 și Detectorul de Fluorescență. Setul de date constă în 10% din toate evenimentele înregistrate la Observator, supuse acelorași proceduri de selecție și reconstrucție utilizate de Colaborare în publicații recente. Perioadele de înregistrare a datelor sunt aceleași cu cele utilizate pentru obținerea rezultatelor științifice prezentate la Conferința Internațională de Radiație Cosmică care a avut loc în 2019. Exemplele de analize folosesc versiuni actualizate de seturi de date Auger, care diferă ușor de cele utilizate pentru publicații din cauza unor îmbunătățiri ulterioare a reconstrucției și calibrării. Pe de altă parte, cum procentul de date disponibil public momentan este de 10% din baza de date Auger, semnificația statistică a cantităților măsurate este redusă, relativ la ceea ce poate fi obținut cu o bază de date completă, dar numarul de evenimente este comparabil cu cel utilizat în câteva din primele publicații științifice ale Colaborării Pierre Auger.

Colaborarea Pierre Auger dorește să continue politica sa de a face publice datele experimentale în scopul accesului publicului larg și divers la acestea, pentru creșterea potențialului științific comun în viitor.

Link-uri:

[1] https://www.auger.org/opendata/

[2] https://www.auger.org

[3] https://www.auger.org/index.php/science

[4] https://labdpr.cab.cnea.gov.ar/ED/

[5] https://www.auger.org/opendata/analysis.php

[6] https://www.auger.org/opendata/display.php?evid=81847956000

Fotografii ale Observatorului Pierre Auger (CC BY-SA 2.0):

https://www.flickr.com/photos/134252569@N07/21948576246/in/album-72157656013297308/

PA_174

PA_071

https://www.flickr.com/photos/134252569@N07/1946

Călătoria prin Univers a particulelor de radiație cosmică: de la sursă extra-galactică la detecția indirectă de pe Pământ

Ilustrație artistică. ©Lucian Muntean/ Gina Isar/ISS

Cercetare și artă contemporană prin pictură.

Lucrare realizată de artistul Lucian Muntean în colaborare cu Gina Isar (ISS), în cadrul proiectului Noaptea Cercetătorilor 2020 „Doing Research at Midnight in ROmania” – DoReMi-RO.

Abstract
Razele cosmice sunt particule subatomice care își au originea în galaxia noastră sau într-o extragalaxie. Sursele lor pot fi cele mai violente corpuri cosmice, precum o gaură neagră sau o supernovă. Particulele primare de radiații cosmice pot fi de la nuclee de hidrogen până la nuclee de fier, care pot atinge energii ultra înalte de până la 10^20 eV. La intrarea în atmosferă a unei astfel de particule cosmice, la interacția cu atomi și molecule din atmosferă, aceasta se dezintegrează printr-o cascadă în avalanșă într-o succesiune de alte particule secundare elementere, precum electroni, miuoni, neutrini etc. Atmosfera devine așadar calorimetrul nostru natural pentru observarea așa-numitelor jerbe atmosferice, care prin intermediul lor radiațiile cosmice primare sunt detectate indirect de pe Pământ, prin diferite tehnici de detecție, care măsoară particulele secundare ce ajung la sol (i.e. detectori hibrizi la sol), care observă noaptea fără lună plină radiația UV produsă în atmosferă prin excitarea moleculelor de azot de către electronii și pozitronii jerbelor atmosferice (i.e telescoape optice), care înregistrează undele electromagnetice produse prin devierea electronilor și pozitronilor în câmpul magnetic al Pământului (i.e. antene radio). Toate aceste ipostaze și metode de detecție se regăsesc în câteva ilustrații artistice realizate în acuarelă, cu aplicație la Observatorul Pierre Auger, cel mai mare experiment de radiație cosmică din lume, localizat în pampasul argentinian, lângă orașul Malargüe, o zonă fără poluare industrială sau alte perturbări luminoase sau sonore, cu condiții de mediu prielnice pentru măsurători indirecte ale mesagerilor cosmici, utilizând tehnici hibride și complementare de detecție pe o suprafață de 3000 km^2.

Demersul artistic
Pentru a realiza aceste ilustrații artistice, care să evidențieze cele menționate mai sus, a fost nevoie în primul rând să înțeleg tot acest proces elaborat, de la generarea radiațiilor cosmice, traseul lor prin Univers și dispersia sub formă de jerbe în atmosfera Pământului, apoi detecția lor la sol. În perioada de documentare, care a durat mai bine de o lună, Gina Isar, specialist în aceste probleme, mi-a furnizat articole, reprezentări grafice și aspecte tehnice despre aparatura de detecție, dar mai ales mi-a explicat în detaliu și mi-a răspuns la toate nelămuririle. A urmat partea de lucru efectiv, care a fost în sine o nouă provocare și anume de a transpune în imagini vizuale aspecte și detalii care practic sunt invizibile.
E paradoxal cum funcționează creierul uman, cum poți prin intermediul imaginației și al creativității să faci o așa călătorie grozavă, de la o gaură neagră de undeva din Univers să străbați galaxia până în Argentina, la Observatorul Pierre Auger, în interiorul tancului de detecție și al ochiului telescopului, tu fiind defapt acasă, în București…
A rămas ca tot ceea ce am vizualizat în minte să transpun pe hârtia de acuarelă. Era fascinant să văd cum în pelicula de apă de pe suprafața colii de hârtie, culoarea rămasă în urma pensulei făcea să apară treptat gaura neagră, fascicolul de radiații, stelele și corpurile cerești din galaxie, apoi jerba în cascadă la intrarea radiațiilor în atmosfera terestră, laserul de calibrare al telescoapelor, a căror ochiuri detectau semnal, rețeaua tancurilor de detecție cu apă pură și ce se întâmplă în ele, cu antenele în emisie și toate astea într-un peisaj arid al pampasului argentinean, pe timp de noapte.
Au rezultat șase lucrări secvențiale de dimensiune 30×40 cm și o lucrare finală pliabilă, ce redă o secțiune pe vertical, de dimensiune 21×140 cm.

Copyright: Lucian Muntean/ Gina Isar/ISS

Notă: Aceste ilustrații artistice pot fi preluate pentru a fi utilizate exclusiv în scopuri educaționale și de conștientizare a fizicii ilustrate. Sursa ilustrațiilor și creditul autorilor este absolut necesar a fi menționat la utilizare.

Persoană de contact (ISS): Dr. P. Gina Isar <isar[at]spacescience[dot]ro>

Galerie foto:

Premiul Nobel 2020 în Fizică acordat pentru descoperirea găurilor negre

Imagine concept a unei găuri negre realizată de Laurențiu Caramete

Anul acesta, premiul Nobel pentru Fizică, anunțat în luna octombrie, a fost împărțit între Roger Penrose, de la Universitatea Oxford din UK, „pentru descoperirea conform căreia formarea de găuri negre constituie o predicție solidă a teoriei relativității generale” și Reinhard Genzel, de la Institutul Max-Planck pentru Fizică Extraterestră din Germania, împreună cu Andrea Ghez, de la Universitatea California din USA, „pentru descoperirea unui obiect supermasiv, compact în centrul galaxiei noastre”, conform comunicatului oficial de presă.

Cei trei laureați care împart anul acesta Premiul Nobel în Fizică au contribuit la descoperirea unora dintre cele mai exotice obiecte din Univers, găurile negre.

În  anul 1965, la 10 ani după moartea lui Albert Einstein, Roger Penrose a reușit să demonstreze existența și să descrie în detaliu formarea și proprietățile găurilor negre, pornind de la teoria relativității și folosind metode matematice revoluționare. Astfel, Penrose a arătat că aceste obiecte super-masive, care captează tot ce intra în ele și în interiorul cărora legile fizicii clasice nu se mai aplică, sunt o consecință directă a teoriei relativității generale a lui Einstein. Articolul în care Roger Penrose şi-a publicat rezultatele este considerat și astăzi ca fiind cea mai importantă primă contribuție la teoria relativității de după apariția sa.

Douăzeci și cinci de ani mai târziu, în 1990, Reinhard Genzel şi Andrea Ghez au condus două echipe de astronomi care au studiat, independent una de cealaltă, centrul galaxiei noastre, mai exact regiunea denumita Sagittarius A*. Cele două echipe au observat comportamentul atipic al stelelor din această regiune centrală a galaxiei noastre, și au dedus că acestea se află în vecinătatea unui obiect super masiv, compact, cu o masă de câteva milioane de ori mai mare decât a Soarelui, ce ocupă o regiune cam de dimensiunile Sistemului nostru Solar. Până în prezent, singurul obiect ale cărui caracteristici pot explica topologia și dinamica acestei regiuni, este o gaura neagră super masivă.

Descoperirea acestui obiect compact este importantă nu doar pentru că probează teoria lui Einstein și calculele lui Penrose, ci și pentru că limitele tehnologice de detecție și de prelucrare de date existente în acel moment au fost depășite la realizarea observațiilor, ducând astfel mai departe la progresul astrofizicii observaționale.

Institutul de Științe Spațiale(ISS) este implicat activ în studiul astrofizicii în general și al găurilor negre masive si super masive în particular, având contribuții precum noi concepte si teorii ale găurilor negre, cataloage de mase de găuri negre sau simulări ale formarii, creșterii si evoluției lor. De asemenea, ISS se afla în topul cercetărilor spațiale în domeniu, de exemplu prin participarea la misiunea spațiala LISA, construită de Agenția Spațială Europeană, misiune ce își propune să studieze semnale de unde gravitaționale provenite de la ciocnirea de obiecte masive, inclusiv găuri negre, si să identifice mecanismele de formare si evoluție a găurilor negre de la crearea lor pana în prezent. Agenția Spațiala Romana (ROSA) susține în permanență contribuțiile României la cercetările spațiale, inclusiv la misiunea LISA, tara noastră fiind astfel ancorată în cercetările de pionierat ale studiului undelor gravitaționale din spațiu.

Persoană de contact: dr. Laurențiu Caramete <lcaramete[at]spacescience[dot]ro>

 

Colaboratori români ai Observatorului Pierre Auger operează integral de la ISS detectorii Auger

Cercetători români la activități operaționale Auger de la ISS

În perioada 9-26 August, 2020, cercetători români, membri ai colaborării Pierre Auger, din cadrul a doua institute de pe platforma de Fizică de la Măgurele, Dr. Paula-Gina Isar în colaborare cu studentul MSc. Dragoș Hîrnea de la ISS-Filială INFLPR și Dr. Alexandru Gherghel-Lascu, respectiv Dr. Denis-Iulian Stanca de la IHIN-HH, au preluat integral în cadrul unei ture operaționale Auger – în premieră în România, de la ISS – operațiile de control și monitorizare de la distanță a telescoapelor de fluorescență si a detectorilor lidar, o parte esențială a experimetului Pierre Auger.

Observatorul Pierre Auger este cel mai mare experiment de radiații cosmce din lume, care studiază efectele atmosferice si proprietățile fizice ale celor mai energetice particule elementare de origine cosmică, cu energii de până la 1020 eV.

Misiunea colaborării internaționale Pierre Auger, la care participă peste 500 de cercetători din întreaga lume, printre care și cercetători români de la două institute naționale de cercetare de pe Platforma de Fizică de la Măgurele (Institutul Național pentru Fizică și Inginerie Nucleară “Horia Hulubei” – IFIN-HH și Institutul de Științe Spațiale – Filială INFLPR) și de la Universitatea Politehnica București, este de a desluși originea, sursele și proprietățile fizice ale particulelor cosmice care penetrează atmosfera Pământului. Acestea dezvoltă jerbe de particule secundare, cele mai energetice distribuindu-se pe suprafața solului pe zeci de kilometri pătrați.

Pentru a măsura astfel de evenimente foarte rare, ale căror energii sunt printre cele mai mari observate vreodată (peste 1018 eV), a fost construit experimentul Pierre Auger în pampasul Argentinian, lânga orașul Malargüe. Experimentul acoperă o suprafață de peste 3000 km2 cu detectori superhibrizi, precum: detectori Cerenkov cu apă pentru măsurarea particulelor secundare care ajung la sol, telescoape optice pentru observarea luminii UV generată în atmosferă, detectori lidar pentru monitorizarea atmosferei și antene radio pentru înregistrarea undelor radio. În timp ce detectorii Cerenkov și antenele radio lucrează continuu și automat 24 din 24 de ore, telescoapele optice sunt operate numai pe timp de noapte și fără lună plină.

Centrul de remote control Auger de la ISS oferă suport la turele operaționale Auger atât colaboratorilor din țară, cât și celor din alte state membre Auger. Centrul regional de la ISS este functional din 2019, fiind complet echipat si avizat conform standardelor Auger cu aparatură modernă hardware și software, asigurând operatorilor Auger condiții confortabile de lucru.

Persoană de contact: Dr. Gina Isar <gina.isar[at]spacescience.ro>, Responsabil Instituțional (ISS) Auger

Galerie foto:

Centrul de remote control Auger de la ISS
De la stânga la dreapta: MSc. Dragoș Hîrnea, Dr. Paula-Gina Isar, Dr. Denis-Iulian Stanca, Dr. Alexandru Gherghel-Lascu

Misiunea ESA/Euclid: Un alt pas către lansare

Satelitul Euclid. Credit foto: Airbus

Misiunea ESA/Euclid a atins un nou obiectiv. Cele două instrumente ale sale, NISP (Near Infrared Spectrometer and Photometer) și VIS (Visible Imager), au fost complet realizate, testate și livrate de compania Airbus Defence and Space în Toulouse (Franța), unde sunt în prezent integrate cu telescopul, pentru a definitiva configurația misiunii.

Utilizând studiul complementar al undelor gravitaționale primordiale (care măsoară distorsiuni ale imaginii galaxiilor datorate distribuției materiei din Univers) și a oscilațiilor acustice ale barionilor (care determina gradul de clasterizare a galaxiilor), Euclid va realiza imagini 3D ale evoluției componentelor materiei întunecate și a energiei întunecate. Acestea vor permite estimarea expansiunii accelerate a Universului cu o acuratețe fără precedent.

Euclid este o misiune de Astronomie și Astrofizică de clasă medie a Agenției Spațiale Europene (ESA).

Institutul de Științe Spațiale (ISS), sub egida Agenției Spațiale Române (ROSA), participă la Misiunea Euclid încă din faza de selecție de către ESA (2007), dezvoltând metode de analiză și interpretare științifică a datelor experimentale.

Comunicatul de presă al ESA în limba engleză este disponibil aici.

Mai multe detalii pentru fiecare instrument în parte sunt disponibile aici.

Persoană de contact (ISS): Dr. Lucia A. Popa <lpopa[at]spacescience[dot]ro>

Galerie foto:

Instrumentul NISP. Credit foto: ESA
Una din componentele CCD ale instrumentului VIS. Credit foto: ESA

„Noaptea Cercetătorilor” – Ediția 2020

În data de 27 noiembrie 2020 va avea loc evenimentul european „Noaptea Cercetătorilor”, sub deviza “Doing Research at Midnight in ROmania – DoReMi-RO”.

Evenimentul își propune să arate publicului larg ce înseamnă să fii cercetător și cât de interesantă și provocatoare este știința si tehnologia înca din școală, prin intermediul a unor variate activități multidisciplinare, precum observații astronomice, experimente interactive, jocuri creative, seminarii și conferințe, dar nu numai!

Evenimentul este organizat de Universitatea „Alexandru Ioan Cuza” din Iași – în calitate de coordonator al unui Consorțiu academic național format din opt Universități și șapte Institute de Cercetare, precum: Universitatea „Lucian Blaga” din Sibiu (ULBS), Universitatea de Vest din Timișoara (UVT), Universitatea Babeș-Bolyai din Cluj-Napoca (UBB), Universitatea din Craiova (UCV), Universitatea din București (UB), Universitatea „Ștefan cel Mare” din Suceava (USV), Universitatea Maritimă din Constanța (CMU),  Institutul Național de Cercetare pentru Fizica Laserilor, Plasmei și  Radiației, Măgurele (INFLPR),  Institutul Național de Cercetare-Dezvoltare pentru Fizica Pământului,  Măgurele (INCDFP),  Institutul de Fizică Atomică, Măgurele (IFA),  Institutul Național de Cercetare Dezvoltare pentru Fizica Materialelor,  Măgurele (INCDFM),  Institutul de Științe Spațiale, Măgurele (ISS), Institutul Național de Cercetare-Dezvoltare pentru Optoelectronică,  Măgurele (INOE 2000) și Institutul Național de Fizică și Inginerie Nucleară „Horia Hulubei”,  Măgurele (IFIN-HH).

Pe lângă activitățile desfășurate la București, alături de celelalte institute de cercetare de pe Platforma de Fizică de la Măgurele, Institutul de Științe Spațiale (ISS) contribuie anul acesta și la extinderea ariei de diseminare a evenimentului “Noaptea Cercetătorilor” cu ajutorul a cinci noi colaboratori pasionați de educația STEAM (Știință, Tehnologie, Inginerie, Arte și Matematică), care ni s-au alăturat în proiect din învățământ și domeniul Astronomiei, precum: Asociația “Ucenicul Astronom” (Miercurea Ciuc), Asociația “Astroclub Meridian 0” (Oradea), Colegiul Național “Ion Luca Caragiale” (Ploiești), Colegiul Național “Barbu Știrbei” (Călărași), Școala Gimnazială “Zaharia Stancu” și Liceul Tehnologic “Virgil Madgearu” (Roșiorii de Vede).

Activitatea la nivel de proiect se va desfășura în 24 de orașe din România și face parte din seria de evenimente finanţate de către Comisia Europeană prin Programul Cadru de Cercetare și Inovare H2020 (2014 – 2020), acțiunile Marie Sklodowska-Curie.

În funcție de situația crizei sanitare cu covid-19 în perioada de desfăsurare a evenimentului, activitatea va avea loc în condiții normale, restrânse sau online.

Persoană de contact (ISS): Paula Gina Isar <isar[at]spacescience[dot]ro>

Afiș cu sigle Colaboratori ISS și Parteneri media:

 

JWST Master Class: varianta locală la ISS, România

Organizatori:

Laurențiu Caramete, Bogdan Dumitru și Răzvan Balașov de la Institutul de Științe Spațiale (ISS)

Marco Sirianni și Tim Rawle de la  Agenția Spațială Europeană (ESA)

Data: 17-18 februarie 2020

Locație: Institutul de Științe Spațiale, Măgurele

Abstract:

Lansarea telescopului spațial James Webb (en. James Webb Space Telescope – JWST) și, de asemenea, deschiderea procesului de submitere a propunerilor științifice (Cycle1 GO) vor începe curând. Pentru acest eveniment, ISS in colaborare cu ESA pregătește un workshop în România pentru instruirea comunitatea științifică. Instruirea constă în dezvoltarea abilităților necesare pentru folosirea uneltelor misiunii spațiale (APT și ETC, unelte cu grad de complexitate ridicat) și pentru a stimula propuneri de idei.

Pe durata acestui workshop local, participanții vor fi familiarizați cu statutul misiunii JSWT și cu instrumentele științifice de la bord (NIRCam, NIRSpec, NIRISS și MIRI). În plus, vor fi prezentate și discutate atât uneltele disponibile pentru propuneri, cât și modurile științifice de observare.

Participarea se face pe baza înregistrării (Formular de inregistrare – Clic aici). Nu există nici o taxă de participare. Întregul workshop se va desfăsura în limba engleză. Vă rugăm să utilizați formularul de mai jos și să furnizați câteva informații despre interesele și întrebările dvs. științifice. Data limită pentru înregistrare este 28 ianuarie 2020.

 

În cazul în care data limită de înscriere a fost depășită vă puteți înregistra la mailul bogdan[dot]dumitru[at]spacescience[dot]ro.